Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Oncology

  • 1,424 Articles
  • 14 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 24
  • 25
  • 26
  • …
  • 142
  • 143
  • Next →
Small molecules that disrupt RAD54-BLM interaction hamper tumor proliferation in colon cancer chemoresistance models
Ekjot Kaur, Ritu Agrawal, Rimpy Arun, Vinoth Madhavan, Vivek Srivastava, Dilip Kumar, Pragyan Parimita Rath, Nitin Kumar, Sreekanth Vedagopuram, Nishant Pandey, Swati Priya, Patrick Legembre, Samudrala Gourinath, Avinash Bajaj, Sagar Sengupta
Ekjot Kaur, Ritu Agrawal, Rimpy Arun, Vinoth Madhavan, Vivek Srivastava, Dilip Kumar, Pragyan Parimita Rath, Nitin Kumar, Sreekanth Vedagopuram, Nishant Pandey, Swati Priya, Patrick Legembre, Samudrala Gourinath, Avinash Bajaj, Sagar Sengupta
View: Text | PDF

Small molecules that disrupt RAD54-BLM interaction hamper tumor proliferation in colon cancer chemoresistance models

  • Text
  • PDF
Abstract

RAD54 and BLM helicase play pivotal roles during homologous recombination repair (HRR) ensuring genome maintenance. BLM amino acids (181-212) interacts with RAD54 and enhances its chromatin remodelling activity. Functionally, this interaction heightens HRR, leading to a decrease in residual DNA damage in colon cancer cells. This contributes to chemoresistance in colon cancer cells against cisplatin, camptothecin and oxaliplatin, eventually promoting tumorigenesis in preclinical colon cancer mouse models. ChIP-seq analysis and validation revealed increased BLM/RAD54 co-recruitment on MRP2 promoter in camptothecin resistant colon cancer cells, leading to BLM-dependent enhancement of RAD54-mediated chromatin remodelling. We screened Prestwick small molecule library intending to revert camptothecin and oxaliplatin induced chemoresistance by disrupting BLM-RAD54 interaction. Three FDA/EMA approved candidates were identified which could disrupt this interaction. These drugs bind to RAD54, alter its conformation and abrogate BLM-RAD54 dependent chromatin remodeling on G5E4 and MRP2 arrays. Notably, the small molecules also reduced HRR repair efficiency in resistant lines, diminished anchorage independent growth, hampered the proliferation of tumors generated using camptothecin and oxaliplatin resistant colon cancer cells in both xenograft and syngeneic mouse models in BLM dependent manner. Hence the three identified small molecules can serve as possible viable candidates for adjunct therapy in colon cancer treatment.

Authors

Ekjot Kaur, Ritu Agrawal, Rimpy Arun, Vinoth Madhavan, Vivek Srivastava, Dilip Kumar, Pragyan Parimita Rath, Nitin Kumar, Sreekanth Vedagopuram, Nishant Pandey, Swati Priya, Patrick Legembre, Samudrala Gourinath, Avinash Bajaj, Sagar Sengupta

×

Comparative genomics incorporating translocation renal cell carcinoma mouse model reveals molecular mechanisms of tumorigenesis
Gopinath Prakasam, Akhilesh Mishra, Alana Christie, Jeffrey Miyata, Deyssy Carrillo, Vanina T. Tcheuyap, Hui Ye, Quyen N. Do, Yunguan Wang, Oscar Reig Torras, Ramesh Butti, Hua Zhong, Jeffrey Gagan, Kevin B. Jones, Thomas J. Carroll, Zora Modrusan, Steffen Durinck, Mai-Carmen Requena-Komuro, Noelle S. Williams, Ivan Pedrosa, Tao Wang, Dinesh Rakheja, Payal Kapur, James Brugarolas
Gopinath Prakasam, Akhilesh Mishra, Alana Christie, Jeffrey Miyata, Deyssy Carrillo, Vanina T. Tcheuyap, Hui Ye, Quyen N. Do, Yunguan Wang, Oscar Reig Torras, Ramesh Butti, Hua Zhong, Jeffrey Gagan, Kevin B. Jones, Thomas J. Carroll, Zora Modrusan, Steffen Durinck, Mai-Carmen Requena-Komuro, Noelle S. Williams, Ivan Pedrosa, Tao Wang, Dinesh Rakheja, Payal Kapur, James Brugarolas
View: Text | PDF

Comparative genomics incorporating translocation renal cell carcinoma mouse model reveals molecular mechanisms of tumorigenesis

  • Text
  • PDF
Abstract

Translocation Renal Cell Carcinoma (tRCC) most commonly involves an ASPSCR1-TFE3 fusion, but molecular mechanisms remain elusive and animal models are lacking. Here, we show that human ASPSCR1-TFE3 driven by Pax8-Cre (a credentialed ccRCC driver) disrupted nephrogenesis and glomerular development causing neonatal death, whilst the ccRCC failed driver, Sglt2-Cre, induced aggressive tRCC (as well as ASPS) with complete penetrance and short latency. However, in both contexts, ASPSCR1-TFE3 led to characteristic morphological cellular changes, loss of epithelial markers, and an EMT program. Electron microscopy of tRCC tumors showed lysosome expansion and functional studies revealed simultaneous activation of autophagy and mTORC1 pathways. Comparative genomic analyses encompassing an institutional human tRCC cohort (including a hitherto unreported SFPQ-TFEB fusion) and a variety of tumorgraft models (ASPSCR1-TFE3, PRCC-TFE3, SFPQ-TFE3, RBM10-TFE3, and MALAT1-TFEB) disclosed significant convergence in canonical (cell cycle, lysosome and mTORC1) and less established pathways such as Myc, E2F and inflammation (IL6/JAK/STAT3, interferon-γ, TLR signaling, systemic lupus, etc). Therapeutic trials (adjusted for human drug exposures) showed anti-tumor activity of cabozantinib. Overall, this study provides insight into MiT/TFE-driven tumorigenesis including the cell of origin and characterizes diverse mouse models available for research.

Authors

Gopinath Prakasam, Akhilesh Mishra, Alana Christie, Jeffrey Miyata, Deyssy Carrillo, Vanina T. Tcheuyap, Hui Ye, Quyen N. Do, Yunguan Wang, Oscar Reig Torras, Ramesh Butti, Hua Zhong, Jeffrey Gagan, Kevin B. Jones, Thomas J. Carroll, Zora Modrusan, Steffen Durinck, Mai-Carmen Requena-Komuro, Noelle S. Williams, Ivan Pedrosa, Tao Wang, Dinesh Rakheja, Payal Kapur, James Brugarolas

×

Immunotherapy-resistant acute lymphoblastic leukemia cells exhibit reduced CD19 and CD22 expression and BTK pathway dependency
Sarah Aminov, Orsi Giricz, David T. Melnekoff, R. Alejandro Sica, Veronika Polishchuk, Cristian Papazoglu, Bonnie Yates, Hao-Wei Wang, Srabani Sahu, Yanhua Wang, Shanisha Gordon-Mitchell, Violetta V. Leshchenko, Carolina Schinke, Kith Pradhan, Srinivas Aluri, Moah Sohn, Stefan K. Barta, Beamon Agarwal, Mendel Goldfinger, Ioannis Mantzaris, Aditi Shastri, William Matsui, Ulrich Steidl, Joshua D. Brody, Nirali N. Shah, Samir Parekh, Amit Verma
Sarah Aminov, Orsi Giricz, David T. Melnekoff, R. Alejandro Sica, Veronika Polishchuk, Cristian Papazoglu, Bonnie Yates, Hao-Wei Wang, Srabani Sahu, Yanhua Wang, Shanisha Gordon-Mitchell, Violetta V. Leshchenko, Carolina Schinke, Kith Pradhan, Srinivas Aluri, Moah Sohn, Stefan K. Barta, Beamon Agarwal, Mendel Goldfinger, Ioannis Mantzaris, Aditi Shastri, William Matsui, Ulrich Steidl, Joshua D. Brody, Nirali N. Shah, Samir Parekh, Amit Verma
View: Text | PDF

Immunotherapy-resistant acute lymphoblastic leukemia cells exhibit reduced CD19 and CD22 expression and BTK pathway dependency

  • Text
  • PDF
Abstract

While therapies targeting CD19 by antibodies, CAR-T cells and T cell engagers have improved the response rates in B-cell malignancies; the emergence of resistant cell populations with low CD19 expression can lead to relapsed disease. We developed an in vitro model of adaptive resistance facilitated by chronic exposure of leukemia cells to a CD19-immunotoxin. Single-cell (sc) RNAseq showed increase in transcriptionally distinct CD19low populations in resistant cells. Mass cytometry demonstrated that CD22 was also decreased in these CD19low resistant cells. ATAC-seq showed decreased chromatin accessibility at promoters of both CD19 and CD22 during development of resistance. Combined loss of both CD19 and CD22 antigens was validated in samples from pediatric and young adult patients with ALL that relapsed after CD19 CAR-T targeted therapy. Functionally, resistant cells were characterized by slower growth and lower basal levels of MEK activation. CD19low resistant cells exhibited preserved B cell receptor signaling and were more sensitive to both BTK and MEK inhibition. These data demonstrate that resistance to CD19 immunotherapies can result in decreased expression of both CD19 and CD22 and can result in dependency on BTK pathways.

Authors

Sarah Aminov, Orsi Giricz, David T. Melnekoff, R. Alejandro Sica, Veronika Polishchuk, Cristian Papazoglu, Bonnie Yates, Hao-Wei Wang, Srabani Sahu, Yanhua Wang, Shanisha Gordon-Mitchell, Violetta V. Leshchenko, Carolina Schinke, Kith Pradhan, Srinivas Aluri, Moah Sohn, Stefan K. Barta, Beamon Agarwal, Mendel Goldfinger, Ioannis Mantzaris, Aditi Shastri, William Matsui, Ulrich Steidl, Joshua D. Brody, Nirali N. Shah, Samir Parekh, Amit Verma

×

Cancer-associated fibroblast–secreted collagen is associated with immune inhibitor receptor LAIR1 in gliomas
Shashwat Tripathi, Hinda Najem, Corey Dussold, Sebastian Pacheco, Jason Miska, Kathleen McCortney, Alicia Steffens, Jordain Walshon, Daniel Winkowski, Michael Cloney, Matthew Ordon, William Gibson, Hanna Kemeny, Mark Youngblood, Rebecca Du, James Mossner, Pavlos Texakalidis, Annelise Sprau, Matthew Tate, Charles David James, Craig M. Horbinski, Nitin R. Wadhwani, Maciej S. Lesniak, Sandi Lam, Ankita Sati, Manish Aghi, Michael DeCuypere, Amy B. Heimberger
Shashwat Tripathi, Hinda Najem, Corey Dussold, Sebastian Pacheco, Jason Miska, Kathleen McCortney, Alicia Steffens, Jordain Walshon, Daniel Winkowski, Michael Cloney, Matthew Ordon, William Gibson, Hanna Kemeny, Mark Youngblood, Rebecca Du, James Mossner, Pavlos Texakalidis, Annelise Sprau, Matthew Tate, Charles David James, Craig M. Horbinski, Nitin R. Wadhwani, Maciej S. Lesniak, Sandi Lam, Ankita Sati, Manish Aghi, Michael DeCuypere, Amy B. Heimberger
View: Text | PDF

Cancer-associated fibroblast–secreted collagen is associated with immune inhibitor receptor LAIR1 in gliomas

  • Text
  • PDF
Abstract

Authors

Shashwat Tripathi, Hinda Najem, Corey Dussold, Sebastian Pacheco, Jason Miska, Kathleen McCortney, Alicia Steffens, Jordain Walshon, Daniel Winkowski, Michael Cloney, Matthew Ordon, William Gibson, Hanna Kemeny, Mark Youngblood, Rebecca Du, James Mossner, Pavlos Texakalidis, Annelise Sprau, Matthew Tate, Charles David James, Craig M. Horbinski, Nitin R. Wadhwani, Maciej S. Lesniak, Sandi Lam, Ankita Sati, Manish Aghi, Michael DeCuypere, Amy B. Heimberger

×

PD-1 and CTLA-4 blockade promote CD86-driven Treg responses upon radiotherapy of lymphocyte-depleted cancer in mice
Elselien Frijlink, Douwe M.T. Bosma, Julia Busselaar, Thomas W. Battaglia, Mo D. Staal, Inge Verbrugge, Jannie Borst
Elselien Frijlink, Douwe M.T. Bosma, Julia Busselaar, Thomas W. Battaglia, Mo D. Staal, Inge Verbrugge, Jannie Borst
View: Text | PDF

PD-1 and CTLA-4 blockade promote CD86-driven Treg responses upon radiotherapy of lymphocyte-depleted cancer in mice

  • Text
  • PDF
Abstract

Radiotherapy (RT) is considered immunogenic, but clinical data demonstrating RT-induced T-cell priming are scarce. Here, we show in a mouse tumor model representative of human lymphocyte-depleted cancer that RT enhances spontaneous priming of thymus-derived (FOXP3+ Helios+) regulatory T-cells (Tregs) by the tumor. These Tregs acquire an effector phenotype, populate the tumor and impede tumor control by a simultaneous, RT-induced CD8+ cytotoxic T-cell (CTL) response. Combination of RT with CTLA-4 or PD-1 blockade, which enables CD28 costimulation, further increased this Treg response and failed to improve tumor control. We discovered that upon RT, CD28-ligands CD86 and CD80 differentially affected the Treg response. CD86, but not CD80, blockade prevented the effector (e)Treg response, enriched the tumor-draining lymph node for PD-L1+CD80+ migratory, conventional dendritic cells (cDCs) and promoted CTL priming. Blockade of CD86 alone or in combination with PD-1, enhanced intra-tumoral CTL accumulation and the combination significantly increased RT-induced tumor regression and overall survival. We advise that combining RT with PD-1 and/or CTLA-4 blockade may be counterproductive in lymphocyte-depleted cancers, since they drive Treg responses in this context. However, combining RT with CD86 blockade may promote control of such tumors by enabling a CTL response.

Authors

Elselien Frijlink, Douwe M.T. Bosma, Julia Busselaar, Thomas W. Battaglia, Mo D. Staal, Inge Verbrugge, Jannie Borst

×

PI3K/mTOR is a therapeutically targetable genetic dependency in diffuse intrinsic pontine glioma
Ryan J. Duchatel, et al.
Ryan J. Duchatel, et al.
View: Text | PDF

PI3K/mTOR is a therapeutically targetable genetic dependency in diffuse intrinsic pontine glioma

  • Text
  • PDF
Abstract

Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma – DIPG), are uniformly fatal brain tumors that lack effective treatment. Analysis of CRISPR-Cas9 loss-of-function gene deletion screens identified PIK3CA and MTOR as targetable molecular dependencies across DIPG patient models, highlighting the therapeutic potential of the blood-brain barrier penetrant PI3K/Akt/mTOR inhibitor, paxalisib. At the human equivalent maximum tolerated dose, mice treated with paxalisib experienced systemic glucose feedback and increased insulin levels commensurate with patients using PI3K inhibitors. To exploit genetic dependence and overcome resistance whilst maintaining compliance and therapeutic benefit, we combined paxalisib with the anti-hyperglycemic drug, metformin. Metformin restored glucose homeostasis and decreased phosphorylation of the insulin receptor in vivo, a common mechanism of PI3K-inhibitor resistance, extending survival of orthotopic models. DIPG models treated with paxalisib increased calcium-activated PKC signaling. The brain penetrant PKC inhibitor enzastaurin in combination with paxalisib, synergistically extended the survival of multiple orthotopic patient-derived and immunocompetent syngeneic allograft models; benefits potentiated in combination with metformin and standard-of-care radiotherapy. Therapeutic adaptation was assessed using spatial transcriptomics and ATAC-sequencing, identifying changes in myelination and tumor immune microenvironment crosstalk. Together, we have identified a clinically relevant DIPG therapeutic combinatorial approach.

Authors

Ryan J. Duchatel, Evangeline R. Jackson, Sarah G. Parackal, Dylan Kiltschewskij, Izac J. Findlay, Abdul Mannan, Dilana E. Staudt, Bryce C. Thomas, Zacary P. Germon, Sandra Laternser, Padraic S. Kearney, M. Fairuz B. Jamaluddin, Alicia M. Douglas, Tyrone S. Beitaki, Holly P. McEwen, Mika L. Persson, Emily A. Hocke, Vaibhav Jain, Michael Aksu, Elizabeth E. Manning, Heather C. Murray, Nicole M. Verrills, Claire Xin Sun, Paul Daniel, Ricardo E. Vilain, David A. Skerrett-Byrne, Brett Nixon, Susan Hua, Charles E. de Bock, Yolanda Colino-Sanguino, Fatima Valdes-Mora, Maria Tsoli, David S. Ziegler, Murray J. Cairns, Eric H. Raabe, Nicholas A. Vitanza, Esther Hulleman, Timothy N. Phoenix, Carl Koschmann, Frank Alvaro, Christopher V. Dayas, Christopher L. Tinkle, Helen Wheeler, James R. Whittle, David D. Eisenstat, Ron Firestein, Sabine Mueller, Santosh Valvi, Jordan R. Hansford, David M. Ashley, Simon G. Gregory, Lindsay B. Kilburn, Javad Nazarian, Jason E. Cain, Matthew D. Dun

×

The CoREST repressor complex mediates phenotype switching and therapy resistance in melanoma
Muzhou Wu, Ailish Hanly, Frederick Gibson, Robert Fisher, Samantha Rogers, Kihyun Park, Angelina Zuger, Kevin Kuang, Jay H. Kalin, Sarah Nocco, Matthew Cole, Amy Xiao, Filisia Agus, Adam Labadorf, Samuel Beck, Marianne Collard, Philip A. Cole, Rhoda M. Alani
Muzhou Wu, Ailish Hanly, Frederick Gibson, Robert Fisher, Samantha Rogers, Kihyun Park, Angelina Zuger, Kevin Kuang, Jay H. Kalin, Sarah Nocco, Matthew Cole, Amy Xiao, Filisia Agus, Adam Labadorf, Samuel Beck, Marianne Collard, Philip A. Cole, Rhoda M. Alani
View: Text | PDF

The CoREST repressor complex mediates phenotype switching and therapy resistance in melanoma

  • Text
  • PDF
Abstract

Virtually all patients with BRAF-mutant melanoma develop resistance to MAPK inhibitors largely through non-mutational events. Although the epigenetic landscape is shown to be altered in therapy-resistant melanomas and other cancers, a specific targetable epigenetic mechanism has not been validated to date. Here, we evaluate the CoREST repressor complex and the recently developed bivalent inhibitor, corin, within the context of melanoma phenotype plasticity and therapeutic resistance. We find that CoREST is a critical mediator of the major distinct melanoma phenotypes and that corin treatment of melanoma cells leads to phenotype reprogramming. Global assessment of transcript and chromatin changes conferred by corin reveals specific effects on histone marks connected to EMT-associated transcription factors and the dual-specificity phosphatases (DUSPs). Remarkably, treatment of BRAF inhibitor (BRAFi)-resistant melanomas with corin promotes resensitization to BRAFi therapy. DUSP1 is consistently downregulated in BRAFi-resistant melanomas which is reversed by corin treatment and associated with inhibition of p38 MAPK activity and resensitization to BRAFi therapies. Moreover, this activity can be recapitulated by the p38 MAPK inhibitor, BIRB 796. These findings identify the CoREST repressor complex as a central mediator of melanoma phenotype plasticity and resistance to targeted therapy and suggest that CoREST inhibitors may prove beneficial to patients with BRAFi-resistant melanoma.

Authors

Muzhou Wu, Ailish Hanly, Frederick Gibson, Robert Fisher, Samantha Rogers, Kihyun Park, Angelina Zuger, Kevin Kuang, Jay H. Kalin, Sarah Nocco, Matthew Cole, Amy Xiao, Filisia Agus, Adam Labadorf, Samuel Beck, Marianne Collard, Philip A. Cole, Rhoda M. Alani

×

HER2 heterogeneity and treatment response-associated profiles in HER2-positive breast cancer in the NCT02326974 clinical trial
Zheqi Li, Otto Metzger Filho, Giuseppe Viale, Patrizia dell'Orto, Leila Russo, Marie-Anne Goyette, Avni Kamat, Denise A. Yardley, Vandana Gupta Abramson, Carlos L. Arteaga, Laura M. Spring, Kami Chiotti, Carol Halsey, Adrienne G. Waks, Tari A. King, Susan C. Lester, Jennifer R. Bellon, Eric P. Winer, Paul T. Spellman, Ian E. Krop, Kornelia Polyak
Zheqi Li, Otto Metzger Filho, Giuseppe Viale, Patrizia dell'Orto, Leila Russo, Marie-Anne Goyette, Avni Kamat, Denise A. Yardley, Vandana Gupta Abramson, Carlos L. Arteaga, Laura M. Spring, Kami Chiotti, Carol Halsey, Adrienne G. Waks, Tari A. King, Susan C. Lester, Jennifer R. Bellon, Eric P. Winer, Paul T. Spellman, Ian E. Krop, Kornelia Polyak
View: Text | PDF

HER2 heterogeneity and treatment response-associated profiles in HER2-positive breast cancer in the NCT02326974 clinical trial

  • Text
  • PDF
Abstract

BACKGROUND. HER2-targeting therapies have great efficacy in HER2-positive breast cancer, but resistance in part due to HER2 heterogeneity (HET) is a significant clinical challenge. We previously described that in a phase II neoadjuvant trastuzumab emtansine (T-DM1) and pertuzumab (T-DM1+P) clinical trial in early-stage HER2-positive breast cancer, none of the patients with HER2-HET tumors had pathologic complete response (pCR). METHODS. To investigate cellular and molecular differences among tumors according to HER2 heterogeneity and pCR, we performed RNA sequencing (RNA-seq) and ERBB2 FISH of 285 pre/post-treatment tumors from 129 patients in this T-DM1+P neoadjuvant trial. A subset of cases was also subject to Nanostring spatial digital profiling. RESULTS. Pre-treatment tumors from patients with pCR had the highest level of ERBB2 mRNA and ERBB signaling. HET was associated with no pCR, basal-like features, low ERBB2 expression yet high ERBB signaling sustained by activation of downstream pathway components. Residual tumors showed decreased HER2 protein levels and ERBB2 copy number heterogeneity and increased PI3K pathway enrichment and luminal features. HET tumors showed minimal treatment-induced transcriptomic changes compared to non-HET tumors. Immune infiltration correlated with pCR and HER2-HET status. CONCLUSION. Resistance mechanisms in HET and non-HET tumors are distinct. HER2-targeting antibodies have limited efficacy in HET tumors. Our results support the stratification of patients based on HET status and the use of agents that target downstream components of the ERBB signaling pathway in patients with HET tumors. TRIAL REGISTRATION. Clinicaltrials.gov NCT02326974. FUNDING. This study was funded by Roche and the National Cancer Institute.

Authors

Zheqi Li, Otto Metzger Filho, Giuseppe Viale, Patrizia dell'Orto, Leila Russo, Marie-Anne Goyette, Avni Kamat, Denise A. Yardley, Vandana Gupta Abramson, Carlos L. Arteaga, Laura M. Spring, Kami Chiotti, Carol Halsey, Adrienne G. Waks, Tari A. King, Susan C. Lester, Jennifer R. Bellon, Eric P. Winer, Paul T. Spellman, Ian E. Krop, Kornelia Polyak

×

T antigen-specific CD8+ T cells associate with PD-1 blockade response in virus-positive Merkel cell carcinoma
Ulla Kring Hansen, Candice D. Church, Ana Micaela Carnaz Simões, Marcus Svensson Frej, Amalie Kai Bentzen, Siri A. Tvingsholm, Jürgen C. Becker, Steven P. Fling, Nirasha Ramchurren, Suzanne L. Topalian, Paul T. Nghiem, Sine Reker Hadrup
Ulla Kring Hansen, Candice D. Church, Ana Micaela Carnaz Simões, Marcus Svensson Frej, Amalie Kai Bentzen, Siri A. Tvingsholm, Jürgen C. Becker, Steven P. Fling, Nirasha Ramchurren, Suzanne L. Topalian, Paul T. Nghiem, Sine Reker Hadrup
View: Text | PDF

T antigen-specific CD8+ T cells associate with PD-1 blockade response in virus-positive Merkel cell carcinoma

  • Text
  • PDF
Abstract

Merkel cell carcinoma (MCC) is a highly immunogenic skin cancer primarily induced by Merkel Cell Polyomavirus, driven by the expression of the oncogenic T antigens (T-Ags). Blockade of the programmed cell death protein-1 (PD-1) pathway has shown remarkable response rates, but evidence for therapy-associated T-Ag-specific immune response and therapeutic strategies for the non-responding fraction are both limited. We tracked T-Ag-reactive CD8+ T cells in peripheral blood of 26 MCC patients under anti-PD1 therapy, using DNA-barcoded pMHC multimers, displaying all peptides from the predicted HLA ligandome of the oncoproteins, covering 33 class-I haplotypes. We observed a broad T-cell recognition of T-Ags, including identification of 20 novel T-Ag-derived epitopes. Broadening of the T-Ag recognition profile and increased T-cell frequencies during therapy were strongly associated with clinical response and prolonged progression-free survival. T-Ag-specific T cells could be further boosted and expanded directly from peripheral blood using artificial antigen-presenting scaffolds, even in patients with no detectable T-Ag-specific T cells. These T cells provided strong tumor rejection capacity while retaining a favorable phenotype for adoptive cell transfer. These findings demonstrate that T-Ag-specific T cells are associated with the clinical outcome to PD-1 blockade and that Ag-presenting scaffolds can be used to boost such responses.

Authors

Ulla Kring Hansen, Candice D. Church, Ana Micaela Carnaz Simões, Marcus Svensson Frej, Amalie Kai Bentzen, Siri A. Tvingsholm, Jürgen C. Becker, Steven P. Fling, Nirasha Ramchurren, Suzanne L. Topalian, Paul T. Nghiem, Sine Reker Hadrup

×

The cholesterol biosynthesis enzyme FAXDC2 couples Wnt/β-catenin to RTK/MAPK signaling
Babita Madan, Shawn R. Wadia, Siddhi Patnaik, Nathan Harmston, Emile K.W. Tan, Iain Bee Huat Tan, W. David Nes, Enrico Petretto, David M. Virshup
Babita Madan, Shawn R. Wadia, Siddhi Patnaik, Nathan Harmston, Emile K.W. Tan, Iain Bee Huat Tan, W. David Nes, Enrico Petretto, David M. Virshup
View: Text | PDF

The cholesterol biosynthesis enzyme FAXDC2 couples Wnt/β-catenin to RTK/MAPK signaling

  • Text
  • PDF
Abstract

Wnts, cholesterol, and MAPK signaling are essential for development and adult homeostasis. Here we report for the first time that fatty acid hydroxylase domain containing 2 (FAXDC2), a previously uncharacterized enzyme, functions as a methyl sterol oxidase catalyzing C4 demethylation in the Kandutsch-Russell branch of the cholesterol biosynthesis pathway. FAXDC2, a paralog of MSMO1, regulates the abundance of specific C4-methyl sterols lophenol and dihydro-TMAS. Highlighting its clinical relevance, FAXDC2 is repressed in Wnt/β-catenin high cancer xenografts, in a mouse genetic model of Wnt activation, and in human colorectal cancers. Moreover, in primary human colorectal cancers, the sterol lophenol, regulated by FAXDC2, accumulates in the cancerous tissues and not in adjacent normal tissues. FAXDC2 links Wnts to RTK/MAPK signaling. Wnt inhibition drives increased recycling of RTKs and activation of the MAPK pathway, and this requires FAXDC2. Blocking Wnt signaling in Wnt-high cancers causes both differentiation and senescence; and this is prevented by knockout of FAXDC2. Our data shows the integration of three ancient pathways, Wnts, cholesterol synthesis, and RTK/MAPK signaling, in cellular proliferation and differentiation.

Authors

Babita Madan, Shawn R. Wadia, Siddhi Patnaik, Nathan Harmston, Emile K.W. Tan, Iain Bee Huat Tan, W. David Nes, Enrico Petretto, David M. Virshup

×
  • ← Previous
  • 1
  • 2
  • …
  • 24
  • 25
  • 26
  • …
  • 142
  • 143
  • Next →
  • ← Previous
  • 1
  • 2
  • Next →
E2F8 keeps liver cancer at bay
Alain de Bruin, Gustavo Leone, and colleagues find that the E2F8-mediated transcriptional repression in the developing liver suppresses hepatocellular carcinoma later in life …
Published July 25, 2016
Scientific Show StopperOncology

AIDing and abetting UV-independent skin cancer
Taichiro Nonaka and colleagues find that AID plays a role in the development of inflammation-driven, non-UV skin cancer
Published March 14, 2016
Scientific Show StopperOncology

CD37 keeps B cell lymphoma at bay
Charlotte de Winde, Sharon Veenbergen, and colleagues demonstrate that loss of CD37 expression relieves SOCS3-mediated suppression of IL-6 signaling and supports the development of B cell lymphoma…
Published January 19, 2016
Scientific Show StopperOncology

Maintaining endometrial epithelial barrier function
Jessica Bowser and colleagues identify a mechanism by which loss of CD73 promotes endometrial cancer progression…
Published December 7, 2015
Scientific Show StopperOncology

Sleuthing out the cellular source of hepatocellular carcinoma
Xueru Mu, Regina Español-Suñer, and colleagues show that tumors in murine hepatocellular carcinoma models are derived from hepatocytes and not from other liver resident cells …
Published September 8, 2015
Scientific Show StopperOncology

Live animal imaging in the far red
Ming Zhang and colleagues developed a far-red-absorbing reporter/probe system that can be used to image live animals and overcomes imaging limitations associated with conventional systems that use lower wavelengths of light…
Published September 8, 2015
Scientific Show StopperTechnical AdvanceOncology

Cancer cells fight off stress with ATF4
Souvik Dey, Carly Sayers, and colleagues reveal that activation of heme oxygenase 1 by ATF4 protects cancer cells from ECM detachment-induced death and promotes metastasis…
Published May 26, 2015
Scientific Show StopperOncology

Smothering Von Hippel-Lindau syndrome-associated phenotypes
Ana Metelo and colleagues demonstrate that specific inhibition of HIF2a ameliorates VHL-associated phenotypes and improves survival in a zebrafish model of disease…
Published April 13, 2015
Scientific Show StopperOncology

Blazing the trail for metastasis
Jill Westcott, Amanda Prechtl, and colleagues identify an epigenetically distinct population of breast cancer cells that promotes collective invasion…
Published April 6, 2015
Scientific Show StopperOncology

Dynamic focal adhesions
Wies van Roosmalen, Sylvia E. Le Dévédec, and colleagues screen for genes that alter cancer cell migration and demonstrate that SRPK1 promotes metastasis...
Published March 16, 2015
Scientific Show StopperOncology
  • ← Previous
  • 1
  • 2
  • Next →
Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts