Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Hematology

  • 375 Articles
  • 4 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 29
  • 30
  • 31
  • …
  • 37
  • 38
  • Next →
c-Myb binds MLL through menin in human leukemia cells and is an important driver of MLL-associated leukemogenesis
Shenghao Jin, … , Anna Kalota, Alan M. Gewirtz
Shenghao Jin, … , Anna Kalota, Alan M. Gewirtz
Published January 19, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI38030.
View: Text | PDF

c-Myb binds MLL through menin in human leukemia cells and is an important driver of MLL-associated leukemogenesis

  • Text
  • PDF
Abstract

Mixed-lineage leukemia (MLL) is a proto-oncogene frequently involved in chromosomal translocations associated with acute leukemia. These chromosomal translocations commonly result in MLL fusion proteins that dysregulate transcription. Recent data suggest that the MYB proto-oncogene, which is an important regulator of hematopoietic cell development, has a role in leukemogenesis driven by the MLL-ENL fusion protein, but exactly how is unclear. Here we have demonstrated that c-Myb is recruited to the MLL histone methyl transferase complex by menin, a protein important for MLL-associated leukemic transformation, and that it contributes substantially to MLL-mediated methylation of histone H3 at lysine 4 (H3K4). Silencing MYB in human leukemic cell lines and primary patient material evoked a global decrease in H3K4 methylation, an unexpected decrease in HOXA9 and MEIS1 gene expression, and decreased MLL and menin occupancy in the HOXA9 gene locus. This decreased occupancy was associated with a diminished ability of an MLL-ENL fusion protein to transform normal mouse hematopoietic cells. Previous studies have shown that MYB expression is regulated by Hoxa9 and Meis1, indicating the existence of an autoregulatory feedback loop. The finding that c-Myb has the ability to direct epigenetic marks, along with its participation in an autoregulatory feedback loop with genes known to transform hematopoietic cells, lends mechanistic and translationally relevant insight into its role in MLL-associated leukemogenesis.

Authors

Shenghao Jin, Huiwu Zhao, Yan Yi, Yuji Nakata, Anna Kalota, Alan M. Gewirtz

×

Lnk regulates integrin αIIbβ3 outside-in signaling in mouse platelets, leading to stabilization of thrombus development in vivo
Hitoshi Takizawa, … , Satoshi Takaki, Koji Eto
Hitoshi Takizawa, … , Satoshi Takaki, Koji Eto
Published December 21, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI39503.
View: Text | PDF

Lnk regulates integrin αIIbβ3 outside-in signaling in mouse platelets, leading to stabilization of thrombus development in vivo

  • Text
  • PDF
Abstract

The nature of the in vivo cellular events underlying thrombus formation mediated by platelet activation remains unclear because of the absence of a modality for analysis. Lymphocyte adaptor protein (Lnk; also known as Sh2b3) is an adaptor protein that inhibits thrombopoietin-mediated signaling, and as a result, megakaryocyte and platelet counts are elevated in Lnk–/– mice. Here we describe an unanticipated role for Lnk in stabilizing thrombus formation and clarify the activities of Lnk in platelets transduced through integrin αIIbβ3–mediated outside-in signaling. We equalized platelet counts in wild-type and Lnk–/– mice by using genetic depletion of Lnk and BM transplantation. Using FeCl3- or laser-induced injury and in vivo imaging that enabled observation of single platelet behavior and the multiple steps in thrombus formation, we determined that Lnk is an essential contributor to the stabilization of developing thrombi within vessels. Lnk–/– platelets exhibited a reduced ability to fully spread on fibrinogen and mediate clot retraction, reduced tyrosine phosphorylation of the β3 integrin subunit, and reduced binding of Fyn to integrin αIIbβ3. These results provide new insight into the mechanism of αIIbβ3-based outside-in signaling, which appears to be coordinated in platelets by Lnk, Fyn, and integrins. Outside-in signaling modulators could represent new therapeutic targets for the prevention of cardiovascular events.

Authors

Hitoshi Takizawa, Satoshi Nishimura, Naoya Takayama, Atsushi Oda, Hidekazu Nishikii, Yohei Morita, Sei Kakinuma, Satoshi Yamazaki, Satoshi Okamura, Noriko Tamura, Shinya Goto, Akira Sawaguchi, Ichiro Manabe, Kiyoshi Takatsu, Hiromitsu Nakauchi, Satoshi Takaki, Koji Eto

×

Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction
Ismael Samudio, … , Heinrich Taegtmeyer, Michael Andreeff
Ismael Samudio, … , Heinrich Taegtmeyer, Michael Andreeff
Published December 21, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI38942.
View: Text | PDF

Pharmacologic inhibition of fatty acid oxidation sensitizes human leukemia cells to apoptosis induction

  • Text
  • PDF
Abstract

The traditional view is that cancer cells predominately produce ATP by glycolysis, rather than by oxidation of energy-providing substrates. Mitochondrial uncoupling — the continuing reduction of oxygen without ATP synthesis — has recently been shown in leukemia cells to circumvent the ability of oxygen to inhibit glycolysis, and may promote the metabolic preference for glycolysis by shifting from pyruvate oxidation to fatty acid oxidation (FAO). Here we have demonstrated that pharmacologic inhibition of FAO with etomoxir or ranolazine inhibited proliferation and sensitized human leukemia cells — cultured alone or on bone marrow stromal cells — to apoptosis induction by ABT-737, a molecule that releases proapoptotic Bcl-2 proteins such as Bak from antiapoptotic family members. Likewise, treatment with the fatty acid synthase/lipolysis inhibitor orlistat also sensitized leukemia cells to ABT-737, which supports the notion that fatty acids promote cell survival. Mechanistically, we generated evidence suggesting that FAO regulates the activity of Bak-dependent mitochondrial permeability transition. Importantly, etomoxir decreased the number of quiescent leukemia progenitor cells in approximately 50% of primary human acute myeloid leukemia samples and, when combined with either ABT-737 or cytosine arabinoside, provided substantial therapeutic benefit in a murine model of leukemia. The results support the concept of FAO inhibitors as a therapeutic strategy in hematological malignancies.

Authors

Ismael Samudio, Romain Harmancey, Michael Fiegl, Hagop Kantarjian, Marina Konopleva, Borys Korchin, Kumar Kaluarachchi, William Bornmann, Seshagiri Duvvuri, Heinrich Taegtmeyer, Michael Andreeff

×

Pivotal role for glycogen synthase kinase–3 in hematopoietic stem cell homeostasis in mice
Jian Huang, … , Stephen G. Emerson, Peter S. Klein
Jian Huang, … , Stephen G. Emerson, Peter S. Klein
Published November 23, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI40572.
View: Text | PDF

Pivotal role for glycogen synthase kinase–3 in hematopoietic stem cell homeostasis in mice

  • Text
  • PDF
Abstract

Hematopoietic stem cell (HSC) homeostasis depends on the balance between self renewal and lineage commitment, but what regulates this decision is not well understood. Using loss-of-function approaches in mice, we found that glycogen synthase kinase–3 (Gsk3) plays a pivotal role in controlling the decision between self renewal and differentiation of HSCs. Disruption of Gsk3 in BM transiently expanded phenotypic HSCs in a β-catenin–dependent manner, consistent with a role for Wnt signaling in HSC homeostasis. However, in assays of long-term HSC function, disruption of Gsk3 progressively depleted HSCs through activation of mammalian target of rapamycin (mTOR). This long-term HSC depletion was prevented by mTOR inhibition and exacerbated by β-catenin knockout. Thus, GSK-3 regulated both Wnt and mTOR signaling in mouse HSCs, with these pathways promoting HSC self renewal and lineage commitment, respectively, such that inhibition of Gsk3 in the presence of rapamycin expanded the HSC pool in vivo. These findings identify unexpected functions for GSK-3 in mouse HSC homeostasis, suggest a therapeutic approach to expand HSCs in vivo using currently available medications that target GSK-3 and mTOR, and provide a compelling explanation for the clinically prevalent hematopoietic effects observed in individuals prescribed the GSK-3 inhibitor lithium.

Authors

Jian Huang, Yi Zhang, Alexey Bersenev, W. Timothy O’Brien, Wei Tong, Stephen G. Emerson, Peter S. Klein

×

The glial cell response is an essential component of hypoxia-induced erythropoiesis in mice
Alexander Weidemann, … , David Kleinfeld, Randall S. Johnson
Alexander Weidemann, … , David Kleinfeld, Randall S. Johnson
Published October 5, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI39378.
View: Text | PDF

The glial cell response is an essential component of hypoxia-induced erythropoiesis in mice

  • Text
  • PDF
Abstract

A key adaptation to environmental hypoxia is an increase in erythropoiesis, driven by the hormone erythropoietin (EPO) through what is traditionally thought to be primarily a renal response. However, both neurons and astrocytes (the largest subpopulation of glial cells in the CNS) also express EPO following ischemic injury, and this response is known to ameliorate damage to the brain. To investigate the role of glial cells as a component of the systemic response to hypoxia, we created astrocyte-specific deletions of the murine genes encoding the hypoxia-inducible transcription factors HIF-1α and HIF-2α and their negative regulator von Hippel–Lindau (VHL) as well as astrocyte-specific deletion of the HIF target gene Vegf. We found that loss of the hypoxic response in astrocytes does not cause anemia in mice but is necessary for approximately 50% of the acute erythropoietic response to hypoxic stress. In accord with this, erythroid progenitor cells and reticulocytes were substantially reduced in number in mice lacking HIF function in astrocytes following hypoxic stress. Thus, we have demonstrated that the glial component of the CNS is an essential component of hypoxia-induced erythropoiesis.

Authors

Alexander Weidemann, Yann M. Kerdiles, Karl X. Knaup, Christopher A. Rafie, Adam T. Boutin, Christian Stockmann, Norihiko Takeda, Miriam Scadeng, Andy Y. Shih, Volker H. Haase, M. Celeste Simon, David Kleinfeld, Randall S. Johnson

×

Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell–derived lin–CD34+CD43+CD45+ progenitors
Kyung-Dal Choi, … , Maxim A. Vodyanik, Igor I. Slukvin
Kyung-Dal Choi, … , Maxim A. Vodyanik, Igor I. Slukvin
Published August 10, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI38591.
View: Text | PDF

Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell–derived lin–CD34+CD43+CD45+ progenitors

  • Text
  • PDF
Abstract

Basic research into human mature myelomonocytic cell function, myeloid lineage diversification and leukemic transformation, and assessment of myelotoxicity in preclinical drug development requires a constant supply of donor blood or bone marrow samples and laborious purification of mature myeloid cells or progenitors, which are present in very small quantities. To overcome these limitations, we have developed a protocol for efficient generation of neutrophils, eosinophils, macrophages, osteoclasts, DCs, and Langerhans cells from human embryonic stem cells (hESCs). As a first step, we generated lin–CD34+CD43+CD45+ hematopoietic cells highly enriched in myeloid progenitors through coculture of hESCs with OP9 feeder cells. After expansion in the presence of GM-CSF, these cells were directly differentiated with specific cytokine combinations toward mature cells of particular types. Morphologic, phenotypic, molecular, and functional analyses revealed that hESC-derived myelomonocytic cells were comparable to their corresponding somatic counterparts. In addition, we demonstrated that a similar protocol could be used to generate myelomonocytic cells from induced pluripotent stem cells (iPSCs). This technology offers an opportunity to generate large numbers of patient-specific myelomonocytic cells for in vitro studies of human disease mechanisms as well as for drug screening.

Authors

Kyung-Dal Choi, Maxim A. Vodyanik, Igor I. Slukvin

×

Transfusion of minor histocompatibility antigen–mismatched platelets induces rejection of bone marrow transplants in mice
Seema R. Patel, … , Arielle Medford, James C. Zimring
Seema R. Patel, … , Arielle Medford, James C. Zimring
Published August 10, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI39590.
View: Text | PDF

Transfusion of minor histocompatibility antigen–mismatched platelets induces rejection of bone marrow transplants in mice

  • Text
  • PDF
Abstract

Bone marrow transplantation (BMT) represents a cure for nonmalignant hematological disorders. However, compared with the stringent conditioning regimens used when performing BMT to treat hematological malignancies, the reduced intensity conditioning regimen used in the context of nonmalignant hematological disorders leads to substantially higher rates of BMT rejection, presumably due to an intact immune system. The relevant patient population typically receives transfusion support, often including platelets, and the frequency of BMT rejection correlates with the frequency of transfusion. Here, we demonstrate that immunity to transfused platelets contributes to subsequent BMT rejection in mice, even when the BMT donor and recipient are MHC matched. We used MHC-matched bone marrow because, although immunity to transfused platelets is best characterized in relation to HLA-specific antibodies, such antibodies are unlikely to play a role in clinical BMT rejection that is HLA matched. However, bone marrow is not matched in the clinic for minor histocompatibility antigens, such as those carried by platelets, and we report that transfusion of minor histocompatibility antigen–mismatched platelets induced subsequent BMT rejection. These findings indicate previously unappreciated sequelae of immunity to platelets in the context of transplantation and suggest that strategies to account for minor histocompatibility mismatching may help to reduce the chance of BMT rejection in human patients.

Authors

Seema R. Patel, Chantel M. Cadwell, Arielle Medford, James C. Zimring

×

High throughput digital quantification of mRNA abundance in primary human acute myeloid leukemia samples
Jacqueline E. Payton, … , Mark A. Watson, Timothy J. Ley
Jacqueline E. Payton, … , Mark A. Watson, Timothy J. Ley
Published May 18, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI38248.
View: Text | PDF

High throughput digital quantification of mRNA abundance in primary human acute myeloid leukemia samples

  • Text
  • PDF
Abstract

Acute promyelocytic leukemia (APL) is characterized by the t(15;17) chromosomal translocation, which results in fusion of the retinoic acid receptor α (RARA) gene to another gene, most commonly promyelocytic leukemia (PML). The resulting fusion protein, PML-RARA, initiates APL, which is a subtype (M3) of acute myeloid leukemia (AML). In this report, we identify a gene expression signature that is specific to M3 samples; it was not found in other AML subtypes and did not simply represent the normal gene expression pattern of primary promyelocytes. To validate this signature for a large number of genes, we tested a recently developed high throughput digital technology (NanoString nCounter). Nearly all of the genes tested demonstrated highly significant concordance with our microarray data (P < 0.05). The validated gene signature reliably identified M3 samples in 2 other AML datasets, and the validated genes were substantially enriched in our mouse model of APL, but not in a cell line that inducibly expressed PML-RARA. These results demonstrate that nCounter is a highly reproducible, customizable system for mRNA quantification using limited amounts of clinical material, which provides a valuable tool for biomarker measurement in low-abundance patient samples.

Authors

Jacqueline E. Payton, Nicole R. Grieselhuber, Li-Wei Chang, Mark Murakami, Gary K. Geiss, Daniel C. Link, Rakesh Nagarajan, Mark A. Watson, Timothy J. Ley

×

TREM-like transcript-1 protects against inflammation-associated hemorrhage by facilitating platelet aggregation in mice and humans
A. Valance Washington, … , Pamela L. Schwartzberg, Daniel W. McVicar
A. Valance Washington, … , Pamela L. Schwartzberg, Daniel W. McVicar
Published May 11, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI36175.
View: Text | PDF

TREM-like transcript-1 protects against inflammation-associated hemorrhage by facilitating platelet aggregation in mice and humans

  • Text
  • PDF
Abstract

Triggering receptor expressed on myeloid cells–like (TREM-like) transcript-1 (TLT-1), a type 1 single Ig domain orphan receptor specific to platelet and megakaryocyte α-granules, relocates to the platelet surface upon platelet stimulation. We found here that patients diagnosed with sepsis, in contrast to healthy individuals, had substantial levels of soluble TLT-1 (sTLT-1) in their plasma that correlated with the presence of disseminated intravascular coagulation. sTLT-1 bound to fibrinogen and augmented platelet aggregation in vitro. Furthermore, the cytoplasmic domain of TLT-1 could also bind ezrin/radixin/moesin family proteins, suggesting its ability to link fibrinogen to the platelet cytoskeleton. Accordingly, platelets of Treml1–/– mice failed to aggregate efficiently, extending tail-bleeding times. Lipopolysaccharide-treated Treml1–/– mice developed higher plasma levels of TNF and D-dimers than wild-type mice and were more likely to succumb during challenge. Finally, Treml1–/– mice were predisposed to hemorrhage associated with localized inflammatory lesions. Taken together, our findings suggest that TLT-1 plays a protective role during inflammation by dampening the inflammatory response and facilitating platelet aggregation at sites of vascular injury. Therefore, therapeutic modulation of TLT-1–mediated effects may provide clinical benefit to patients with hypercoagulatory conditions, including those associated with inflammation.

Authors

A. Valance Washington, Sébastien Gibot, Ismael Acevedo, James Gattis, Laura Quigley, Robert Feltz, Alina De La Mota, Rebecca L. Schubert, Julio Gomez-Rodriguez, Jun Cheng, Amalia Dutra, Evgenia Pak, Oleg Chertov, Linette Rivera, Jessica Morales, Jacek Lubkowski, Robert Hunter, Pamela L. Schwartzberg, Daniel W. McVicar

×

Targeting autophagy potentiates tyrosine kinase inhibitor–induced cell death in Philadelphia chromosome–positive cells, including primary CML stem cells
Cristian Bellodi, … , Paolo Salomoni, Bruno Calabretta
Cristian Bellodi, … , Paolo Salomoni, Bruno Calabretta
Published April 13, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI35660.
View: Text | PDF | Corrigendum

Targeting autophagy potentiates tyrosine kinase inhibitor–induced cell death in Philadelphia chromosome–positive cells, including primary CML stem cells

  • Text
  • PDF
Abstract

Imatinib mesylate (IM), a potent inhibitor of the BCR/ABL tyrosine kinase, has become standard first-line therapy for patients with chronic myeloid leukemia (CML), but the frequency of resistance increases in advancing stages of disease. Elimination of BCR/ABL-dependent intracellular signals triggers apoptosis, but it is unclear whether this activates additional cell survival and/or death pathways. We have shown here that IM induces autophagy in CML blast crisis cell lines, CML primary cells, and p210BCR/ABL-expressing myeloid precursor cells. IM-induced autophagy did not involve c-Abl or Bcl-2 activity but was associated with ER stress and was suppressed by depletion of intracellular Ca2+, suggesting it is mechanistically nonoverlapping with IM-induced apoptosis. We further demonstrated that suppression of autophagy using either pharmacological inhibitors or RNA interference of essential autophagy genes enhanced cell death induced by IM in cell lines and primary CML cells. Critically, the combination of a tyrosine kinase inhibitor (TKI), i.e., IM, nilotinib, or dasatinib, with inhibitors of autophagy resulted in near complete elimination of phenotypically and functionally defined CML stem cells. Together, these findings suggest that autophagy inhibitors may enhance the therapeutic effects of TKIs in the treatment of CML.

Authors

Cristian Bellodi, Maria Rosa Lidonnici, Ashley Hamilton, G. Vignir Helgason, Angela Rachele Soliera, Mattia Ronchetti, Sara Galavotti, Kenneth W. Young, Tommaso Selmi, Rinat Yacobi, Richard A. Van Etten, Nick Donato, Ann Hunter, David Dinsdale, Elena Tirrò, Paolo Vigneri, Pierluigi Nicotera, Martin J. Dyer, Tessa Holyoake, Paolo Salomoni, Bruno Calabretta

×
  • ← Previous
  • 1
  • 2
  • …
  • 29
  • 30
  • 31
  • …
  • 37
  • 38
  • Next →
Teasing apart active site contributions
Junsong Zhou, Yi Wu, and colleagues reveal that the C-terminal redox-active site of protein disulfide isomerase is essential for coagulation…
Published November 3, 2015
Scientific Show StopperHematology

PRMT5 keeps hematopoietic cells renewing
Fan Liu and colleagues demonstrate that the type II arginine methyltransferase PRMT5 is an important regulator of hematopoietic cell maintenance…
Published August 10, 2015
Scientific Show StopperHematology

Moving toward donor-independent platelets
Ji-Yoon Noh and colleagues use a fine-tuned approach to generate platelet-producing megakaryocyte-erythroid progenitors from murine embryonic stem cells…
Published May 11, 2015
Scientific Show StopperHematology

A family affair
Vijay Sankaran and colleagues demonstrate that a mutation in the X-chromosomal gene encoding aminolevulinic acid synthase underlies disease in a family with macrocytic anemia…
Published February 23, 2015
Scientific Show StopperHematology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts