Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Gastroenterology

  • 127 Articles
  • 6 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 12
  • 13
  • Next →
Inactivation of paracellular cation-selective claudin-2 channels attenuates immune-mediated experimental colitis in mice
Preeti Raju, … , Sachiko Tsukita, Jerrold R. Turner
Preeti Raju, … , Sachiko Tsukita, Jerrold R. Turner
Published June 9, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI138697.
View: Text | PDF

Inactivation of paracellular cation-selective claudin-2 channels attenuates immune-mediated experimental colitis in mice

  • Text
  • PDF
Abstract

The tight junction protein claudin-2 is upregulated in disease. Although many studies have linked intestinal barrier loss to local and systemic disease, these have relied on macromolecular probes. In vitro analyses show however that these probes cannot be accommodated by size- and charge-selective claudin-2 channels. We sought to define the impact of claudin-2 channels on disease. Transgenic claudin-2 overexpression or IL-13-induced claudin-2 upregulation increased intestinal small cation permeability in vivo. IL-13 did not however affect permeability in claudin-2-knockout mice. Claudin-2 is therefore necessary and sufficient to effect size- and charge-selective permeability increases in vivo. In chronic disease, T-cell transfer colitis severity was augmented or diminished in claudin-2 transgenic or knockout mice, respectively. We translated in vitro data suggesting that casein kinase-2 (CK2) inhibition blocks claudin-2 channel function and found that CK2 inhibition prevented IL-13-induced, claudin-2-mediated permeability increases in vivo. In chronic immune-mediated colitis, CK2 inhibition attenuated progression in claudin-2-sufficient, but not claudin-2-knockout, mice, i.e., the effect was claudin-2-dependent. Paracellular flux mediated by claudin-2 channels can therefore promote immune-mediated colitis progression. Although the mechanisms by which claudin-2 channels intensify disease remain to be defined, these data suggest that claudin-2 may be an accessible target in immune-mediated disorders, including inflammatory bowel disease.

Authors

Preeti Raju, Nitesh Shashikanth, Pei-Yun Tsai, Pawin Pongkorpsakol, Sandra Chanez-Parades, Peter R. Steinhagen, Wei-Ting Kuo, Gurminder Singh, Sachiko Tsukita, Jerrold R. Turner

×

Caspase-11–mediated enteric neuronal pyroptosis underlies Western diet–induced colonic dysmotility
Lan Ye, … , Wenhui Hu, Shanthi Srinivasan
Lan Ye, … , Wenhui Hu, Shanthi Srinivasan
Published June 2, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI130176.
View: Text | PDF

Caspase-11–mediated enteric neuronal pyroptosis underlies Western diet–induced colonic dysmotility

  • Text
  • PDF
Abstract

Enteric neuronal degeneration, as seen in inflammatory bowel disease, obesity, and diabetes, can lead to gastrointestinal dysmotility. Pyroptosis is a novel form of programmed cell death but little is known about its role in enteric neuronal degeneration. We observed higher levels of cleaved caspase-1, a marker of pyroptosis, in myenteric ganglia of overweight and obese human subjects compared with normal-weight subjects. Western diet–fed (WD-fed) mice exhibited increased myenteric neuronal pyroptosis, delayed colonic transit, and impaired electric field stimulation–induced colonic relaxation responses. WD increased TLR4 expression and cleaved caspase-1 in myenteric nitrergic neurons. Overactivation of nitrergic neuronal NF-κB signaling resulted in increased pyroptosis and delayed colonic motility. In caspase-11–deficient mice, WD did not induce nitrergic myenteric neuronal pyroptosis and colonic dysmotility. To understand the contributions of saturated fatty acids and bacterial products to the steps leading to enteric neurodegeneration, we performed in vitro experiments using mouse enteric neurons. Palmitate and lipopolysaccharide (LPS) increased nitrergic, but not cholinergic, enteric neuronal pyroptosis. LPS gained entry to the cytosol in the presence of palmitate, activating caspase-11 and gasdermin D, leading to pyroptosis. These results support a role of the caspase-11–mediated pyroptotic pathway in WD-induced myenteric nitrergic neuronal degeneration and colonic dysmotility, providing important therapeutic targets for enteric neuropathy.

Authors

Lan Ye, Ge Li, Anna Goebel, Abhinav V. Raju, Feng Kong, Yanfei Lv, Kailin Li, Yuanjun Zhu, Shreya Raja, Peijian He, Fang Li, Simon Musyoka Mwangi, Wenhui Hu, Shanthi Srinivasan

×

Taste-related reward is associated with weight loss following bariatric surgery
Kimberly R. Smith, … , Susan Carnell, Kimberley E. Steele
Kimberly R. Smith, … , Susan Carnell, Kimberley E. Steele
Published May 19, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI137772.
View: Text | PDF

Taste-related reward is associated with weight loss following bariatric surgery

  • Text
  • PDF
Abstract

Background: Bariatric surgeries are the most effective treatments for successful and sustained weight loss but individuals vary in treatment response. Understanding the neurobiological and behavioral mechanisms accounting for this variation could lead to the development of personalized therapeutic approaches and improve treatment outcomes. The primary objectives were to investigate changes in taste preferences and taste-induced brain responses after Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG) and to identify potential taste-related predictors of weight loss. Methods: Women, ages 18 to 55, with a body mass index ≥ 35 kg/m2 and approved for bariatric surgery at the Johns Hopkins Center for Bariatric Surgery were recruited for participation. Demographics, anthropometrics, liking ratings, and neural responses to varying concentrations of sucrose+fat mixtures were assessed pre- and post-surgery via visual analogue scales and functional magnetic resonance imaging. Results: Bariatric surgery produced decreases in liking for sucrose-sweetened mixtures. Greater preference for sucrose-sweetened mixtures prior to surgery was associated with greater weight loss in RYGB but not VSG. In the RYGB group only, individuals who showed lower taste-induced activation in the ventral tegmental area (VTA) prior to surgery and greater changes in taste-induced VTA activation two weeks following surgery experienced better weight loss. Conclusions: The anatomical and/or metabolic changes associated with RYGB may more effectively “reset” the neural processing of reward stimuli, thereby rescuing the blunted activation in the mesolimbic pathway found in patients with obesity. Further, these findings suggest that RYGB may be particularly effective in patients with a preference for sweet foods. Trial Registration: Not Applicable.Funding: K23DK100559 and The Dalio Philanthropies. Funding: K23DK100559 and The Dalio Philanthropies.

Authors

Kimberly R. Smith, Afroditi Papantoni, Maria G. Veldhuizen, Vidyulata Kamath, Civonnia Harris, Timothy H. Moran, Susan Carnell, Kimberley E. Steele

×

Genomic and epigenomic EBF1 alterations modulate TERT expression in gastric cancer
Manjie Xing, … , Bin Tean Teh, Patrick Tan
Manjie Xing, … , Bin Tean Teh, Patrick Tan
Published May 4, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI126726.
View: Text | PDF

Genomic and epigenomic EBF1 alterations modulate TERT expression in gastric cancer

  • Text
  • PDF
Abstract

Transcriptional reactivation of telomerase catalytic subunit (TERT) is a frequent hallmark of cancer, occurring in 90% of human malignancies. However, specific mechanisms driving TERT reactivation remain obscure for many tumor types and in particular gastric cancer (GC), a leading cause of global cancer mortality. Here, through comprehensive genomic and epigenomic analysis of primary GCs and GC cell lines, we identified the transcription factor early B cell factor 1 (EBF1) as a TERT transcriptional repressor and inactivation of EBF1 function as a major cause of TERT upregulation. Abolishment of EBF1 function occurs through 3 distinct (epi)genomic mechanisms. First, EBF1 is epigenetically silenced via DNA methyltransferase, polycomb-repressive complex 2 (PRC2), and histone deacetylase activity in GCs. Second, recurrent, somatic, and heterozygous EBF1 DNA–binding domain mutations result in the production of dominant-negative EBF1 isoforms. Third, more rarely, genomic deletions and rearrangements proximal to the TERT promoter remobilize or abolish EBF1-binding sites, derepressing TERT and leading to high TERT expression. EBF1 is also functionally required for various malignant phenotypes in vitro and in vivo, highlighting its importance for GC development. These results indicate that multimodal genomic and epigenomic alterations underpin TERT reactivation in GC, converging on transcriptional repressors such as EBF1.

Authors

Manjie Xing, Wen Fong Ooi, Jing Tan, Aditi Qamra, Po-Hsien Lee, Zhimei Li, Chang Xu, Nisha Padmanabhan, Jing Quan Lim, Yu Amanda Guo, Xiaosai Yao, Mandoli Amit, Ley Moy Ng, Taotao Sheng, Jing Wang, Kie Kyon Huang, Chukwuemeka George Anene-Nzelu, Shamaine Wei Ting Ho, Mohana Ray, Lijia Ma, Gregorio Fazzi, Kevin Junliang Lim, Giovani Claresta Wijaya, Shenli Zhang, Tannistha Nandi, Tingdong Yan, Mei Mei Chang, Kakoli Das, Zul Fazreen Adam Isa, Jeanie Wu, Polly Suk Yean Poon, Yue Ning Lam, Joyce Suling Lin, Su Ting Tay, Ming Hui Lee, Angie Lay Keng Tan, Xuewen Ong, Kevin White, Steven George Rozen, Michael Beer, Roger Sik Yin Foo, Heike Irmgard Grabsch, Anders Jacobsen Skanderup, Shang Li, Bin Tean Teh, Patrick Tan

×

Bacterial CagA protein compromises tumor suppressor mechanisms in gastric epithelial cells
Manikandan Palrasu, … , Richard M. Peek Jr., Alexander I. Zaika
Manikandan Palrasu, … , Richard M. Peek Jr., Alexander I. Zaika
Published April 6, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI130015.
View: Text | PDF

Bacterial CagA protein compromises tumor suppressor mechanisms in gastric epithelial cells

  • Text
  • PDF
Abstract

Approximately half of the world’s population is infected with the stomach pathogen Helicobacter pylori. Infection with H. pylori is the main risk factor for distal gastric cancer. Bacterial virulence factors, such as the oncoprotein CagA, augment cancer risk. Yet despite high infection rates, only a fraction of H. pylori–infected individuals develop gastric cancer. This raises the question of defining the specific host and bacterial factors responsible for gastric tumorigenesis. To investigate the tumorigenic determinants, we analyzed gastric tissues from human subjects and animals infected with H. pylori bacteria harboring different CagA status. For laboratory studies, well-defined H. pylori strain B128 and its cancerogenic derivative strain 7.13, as well as various bacterial isogenic mutants were employed. We found that H. pylori compromises key tumor suppressor mechanisms: the host stress and apoptotic responses. Our studies showed that CagA induces phosphorylation of XIAP E3 ubiquitin ligase, which enhances ubiquitination and proteasomal degradation of the host proapoptotic factor Siva1. This process is mediated by the PI3K/Akt pathway. Inhibition of Siva1 by H. pylori increases survival of human cells with damaged DNA. It occurs in a strain-specific manner and is associated with the ability to induce gastric tumor.

Authors

Manikandan Palrasu, Elena Zaika, Wael El-Rifai, Monica Garcia-Buitrago, Maria Blanca Piazuelo, Keith T. Wilson, Richard M. Peek Jr., Alexander I. Zaika

×

Distinct immune characteristics distinguish hereditary and idiopathic chronic pancreatitis
Bomi Lee, … , Stephen Pandol, Aida Habtezion
Bomi Lee, … , Stephen Pandol, Aida Habtezion
Published February 13, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI134066.
View: Text | PDF

Distinct immune characteristics distinguish hereditary and idiopathic chronic pancreatitis

  • Text
  • PDF
Abstract

Chronic pancreatitis (CP) is considered an irreversible fibroinflammatory pancreatic disease. Despite numerous animal model studies, questions remain about local immune characteristics in human CP. We profiled pancreatic immune cell characteristics in control organ donors and CP patients that included hereditary and idiopathic CP undergoing total pancreatectomy with islet auto-transplantation. Flow cytometric analysis revealed a significant increase in the frequency of CD68+ macrophages in idiopathic CP. In contrast, hereditary CP showed a significant increase in CD3+ T cell frequency, which prompted us to investigate the T cell receptor β (TCRβ) repertoire in CP and controls. TCRβ-sequencing revealed a significant increase in TCRβ repertoire diversity and reduced clonality in both CP groups versus controls. Interestingly, we observed differences in Vβ-Jβ gene family usage between hereditary and idiopathic CP and a positive correlation of TCRβ rearrangements with disease severity scores. Immunophenotyping analyses in hereditary and idiopathic CP pancreata indicate differences in innate and adaptive immune responses, which highlights differences in immunopathogenic mechanism of disease among subtypes of CP. TCR repertoire analysis further suggests a role for specific T cell responses in hereditary versus idiopathic CP pathogenesis providing new insights into immune responses associated with human CP.

Authors

Bomi Lee, Julia Z. Adamska, Hong Namkoong, Melena D. Bellin, Joshua J. Wilhelm, Gregory L. Szot, David M. Louis, Mark M. Davis, Stephen Pandol, Aida Habtezion

×

TRPV4 channel opening mediates pressure-induced pancreatitis initiated by Piezo1 activation
Sandip M. Swain, … , Steven R. Vigna, Rodger A. Liddle
Sandip M. Swain, … , Steven R. Vigna, Rodger A. Liddle
Published January 30, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI134111.
View: Text | PDF

TRPV4 channel opening mediates pressure-induced pancreatitis initiated by Piezo1 activation

  • Text
  • PDF
Abstract

Elevated pressure in the pancreatic gland is the central cause of pancreatitis following abdominal trauma, surgery, endoscopic retrograde cholangiopancreatography (ERCP), and gallstones. In the pancreas excessive intracellular calcium causes mitochondrial dysfunction, premature zymogen activation, and necrosis ultimately leading to pancreatitis. Although stimulation of the mechanically activated, calcium-permeable ion channel, Piezo1, in the pancreatic acinar cell is the initial step in pressure-induced pancreatitis, activation of Piezo1 produces only transient elevation in intracellular calcium that is insufficient to cause pancreatitis. Therefore, how pressure produces a prolonged calcium elevation necessary to induce pancreatitis is unknown. We demonstrate that Piezo1 activation in pancreatic acinar cells caused a prolonged elevation in intracellular calcium levels, mitochondrial depolarization, intracellular trypsin activation, and cell death. Notably, these effects were dependent on the degree and duration of force applied to the cell. Low or transient force were insufficient to activate these pathological changes whereas higher and prolonged application of force triggered sustained elevation in intracellular calcium leading to enzyme activation and cell death. All of these pathological events were rescued in acinar cells treated with a Piezo1 antagonist and in acinar cells from mice with genetic deletion of Piezo1. We discovered that Piezo1 stimulation triggered TRPV4 channel opening which was responsible for the sustained elevation in intracellular calcium that caused intracellular organelle dysfunction. Moreover, TRPV4 gene knockout mice were protected from Piezo1 agonist- and pressure-induced pancreatitis. These studies unveil a calcium signaling pathway in which Piezo1-induced TRPV4 channel opening causes pancreatitis.

Authors

Sandip M. Swain, Joelle M.J. Romac, Rafiq A. Shahid, Stephen J. Pandol, Wolfgang Liedtke, Steven R. Vigna, Rodger A. Liddle

×

Pancreatic triglyceride lipase mediates lipotoxic systemic inflammation
Cristiane de Oliveira, … , Mark E. Lowe, Vijay P. Singh
Cristiane de Oliveira, … , Mark E. Lowe, Vijay P. Singh
Published January 9, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI132767.
View: Text | PDF

Pancreatic triglyceride lipase mediates lipotoxic systemic inflammation

  • Text
  • PDF
Abstract

Visceral adipose tissue plays a critical role in numerous diseases. While imaging studies often show adipose involvement in abdominal diseases, their outcomes may vary from being a mild self limited illness to one with systemic inflammation and organ failure. We therefore compared the pattern of visceral adipose injury during acute pancreatitis and acute diverticulitis to determine its role in organ failure. Acute pancreatitis-associated adipose tissue had ongoing lipolysis in the absence of adipocyte triglyceride lipase (ATGL). Pancreatic lipase injection into mouse visceral adipose tissue hydrolyzed adipose triglyceride and generated excess non-esterified fatty acids (NEFA), which caused organ failure in the absence of acute pancreatitis. Pancreatic triglyceride lipase (PNLIP) increased in adipose tissue during pancreatitis and entered adipocytes by multiple mechanisms, hydrolyzing adipose triglyceride and generating excessive NEFA. During pancreatitis, obese PNLIP knockout mice, unlike obese adipocyte-specific ATGL knockouts, had lower visceral adipose tissue lipolysis, milder inflammation, lesser organ failure, and improved survival. PNLIP knockout mice, unlike ATGL knockouts, were protected from adipocyte-induced pancreatic acinar injury without affecting NEFA signaling or acute pancreatitis induction. Therefore during pancreatitis, unlike diverticulitis, PNLIP leaked into visceral adipose tissue can cause excessive visceral adipose tissue lipolysis independent of adipocyte-autonomous ATGL, and thereby worsen organ failure.

Authors

Cristiane de Oliveira, Biswajit Khatua, Pawan Noel, Sergiy Kostenko, Arup Bag, Bijinu Balakrishnan, Krutika S. Patel, Andre A. Guerra, Melissa N. Martinez, Shubham Trivedi, Ann E. McCullough, Dora M. Lam-Himlin, Sarah Navina, Douglas O. Faigel, Norio Fukami, Rahul Pannala, Anna Evans Phillips, Georgios I. Papachristou, Erin E. Kershaw, Mark E. Lowe, Vijay P. Singh

×

Bruton tyrosine kinase deficiency augments NLRP3 inflammasome activation and causes IL-1β-mediated colitis
Liming Mao, … , Adrian Wiestner, Warren Strober
Liming Mao, … , Adrian Wiestner, Warren Strober
Published January 2, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI128322.
View: Text | PDF

Bruton tyrosine kinase deficiency augments NLRP3 inflammasome activation and causes IL-1β-mediated colitis

  • Text
  • PDF
Abstract

Bruton tyrosine kinase (BTK) is present in a wide variety of cells and may thus have important non-B cell functions. Here we explored the function of this kinase in macrophages with studies of its regulation of the NLRP3 inflammasome. We found that bone marrow-derived macrophages (BMDMs) from BTK-deficient mice or monocytes from X-linked agammaglobulinemia patients exhibit increased NLRP3 inflammasome activity; this was also the case with BMDMs exposed to low doses of BTK inhibitor such as ibrutinib and monocytes from chronic lymphocytic leukemia patients being treated with ibrutinib. In mechanistic studies, we found that BTK binds to NLRP3 during the priming phase of inflammasome activation and in doing so inhibits LPS/nigericin-induced assembly of the NLRP3 inflammasome during the activation phase of inflammasome activation. This inhibitory effect was caused by BTK inhibition of PP2A-mediated dephosphorylation of Ser5 in the pyrin domain of NLRP3. Finally, we showed that BTK-deficient mice are subject to severe experimental colitis and such colitis is normalized by administration of anti-IL-β or an inhibitor of IL-1β signaling, anakinra. Together, these studies strongly suggest that BTK functions as a physiologic inhibitor of NLRP3 inflammasome activation; they thereby explain the fact that XLA patients are prone to develop Crohn’s disease.

Authors

Liming Mao, Atsushi Kitani, Eitaro Hiejima, Kim Montgomery-Recht, Wenchang Zhou, Ivan Fuss, Adrian Wiestner, Warren Strober

×

A Clostridia-rich microbiota enhances bile acid excretion in diarrhea-predominant irritable bowel syndrome
Ling Zhao, … , Wei Jia, Zhaoxiang Bian
Ling Zhao, … , Wei Jia, Zhaoxiang Bian
Published December 9, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI130976.
View: Text | PDF

A Clostridia-rich microbiota enhances bile acid excretion in diarrhea-predominant irritable bowel syndrome

  • Text
  • PDF
Abstract

An excess of fecal bile acids (BAs) is thought to be one of the mechanisms for diarrhea-predominant irritable bowel syndrome (IBS-D). However, the factors causing excessive BA excretion remain incompletely studied. Given the importance of gut microbiota in BA metabolism, we hypothesized that gut dysbiosis might contribute to excessive BA excretion in IBS-D. By performing BA-related metabolic and metagenomic analyses in 290 IBS-D patients and 89 healthy volunteers, we found that 24.5% of IBS-D patients exhibited excessive excretion of total BAs and alteration of BA-transforming bacteria in feces. Notably, the increase in Clostridia bacteria (e.g., C. scindens) was positively associated with the levels of fecal BAs and serum 7α-hydroxy-4-cholesten-3-one (C4), but negatively correlated with serum fibroblast growth factor 19 (FGF19) concentration. Furthermore, colonization with Clostridia-rich IBS-D fecal microbiota or C. scindens individually enhanced serum C4 and hepatic conjugated BAs but reduced ileal FGF19 expression in mice. Inhibition of Clostridium species with vancomycin yielded opposite results. Clostridia-derived BAs suppressed the intestinal FGF19 expression in vitro and in vivo. In conclusion, this study demonstrates that the Clostridia-rich microbiota contributes to excessive BA excretion in IBS-D patients, which provides a mechanistic hypothesis with testable clinical implications.

Authors

Ling Zhao, Wei Yang, Yang Chen, Fengjie Huang, Lin Lu, Chengyuan Lin, Tao Huang, Ziwan Ning, Lixiang Zhai, Linda L.D. Zhong, Waiching Lam, Zhen Yang, Xuan Zhang, Chungwah Cheng, Lijuan Han, Qinwei Qiu, Xiaoxiao Shang, Runyue Huang, Haitao Xiao, Zhenxing Ren, Dongfeng Chen, Silong Sun, Hani El-Nezami, Zongwei Cai, Aiping Lu, Xiaodong Fang, Wei Jia, Zhaoxiang Bian

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 12
  • 13
  • Next →
Loss of intestinal integrity
Rocío López-Posadas and colleagues reveal that loss of Rho-A activation and signaling promotes loss of intestinal barrier function in inflammatory bowel disease…
Published January 11, 2016
Scientific Show StopperGastroenterology

Insight into neonatal necrotizing enterocolitis
Charlotte Egan and colleagues reveal that intestinal TLR4-mediated lymphocyte infiltration and polarization toward a Th17 population promotes neonatal necrotizing enterocolitis…
Published December 21, 2015
Scientific Show StopperGastroenterology

The intestinal healing power of mesenchymal stem cells
Nicholas Manieri and colleagues demonstrate that mesenchymal stem cells inhibit intestinal ulcer formation by stimulating angiogenesis …
Published August 17, 2015
Scientific Show StopperGastroenterology

Repairing wounds with annexin A1
Giovanna Leoni and colleagues demonstrate that extracellular vesicles and nanoparticles contacting annexin A1 activate mucosal wound repair pathways…
Published February 9, 2015
Scientific Show StopperGastroenterology

Goblet cells contribute to a sticky situation
Liu and colleges demonstrate that goblet cell dysfunction in the cystic fibrosis mouse intestine results from an epithelial-autonomous effect of CFTR-deficiency...
Published February 2, 2015
Scientific Show StopperGastroenterology

Enteroendocrine cells make the connection
Diego Bohórquez and colleagues demonstrate that enteroendocrine cells directly interact with nerves in the gut mucosa…
Published January 2, 2015
Scientific Show StopperGastroenterology
Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts