Dysregulation of Toll-like receptor (TLR) signaling contributes to the pathogenesis of autoimmune diseases. Here, we provide genetic evidence that tankyrase, a member of the poly(ADP-ribose) polymerase (PARP) family, negatively regulates TLR2 signaling. We show that mice lacking tankyrase in myeloid cells developed severe systemic inflammation with high serum inflammatory cytokine levels. We provide mechanistic evidence that tankyrase deficiency resulted in tyrosine phosphorylation and activation of TLR2 and show that phosphorylation of tyrosine 647 within the TIR domain by SRC and SYK kinases was critical for TLR2 stabilization and signaling. Last, we show that the elevated cytokine production and inflammation observed in mice lacking tankyrase in myeloid cells were dependent on the adaptor protein 3BP2, which is required for SRC and SYK activation. These data demonstrate that tankyrase provides a checkpoint on the TLR-mediated innate immune response.
Yoshinori Matsumoto, Ioannis D. Dimitriou, Jose La Rose, Melissa Lim, Susan Camilleri, Napoleon Law, Hibret A. Adissu, Jiefei Tong, Michael F. Moran, Andrzej Chruscinski, Fang He, Yosuke Asano, Takayuki Katsuyama, Ken-ei Sada, Jun Wada, Robert Rottapel
A disequilibrium between immunosuppressive regulatory T cells (Tregs) and inflammatory interleukin (IL)-17-producing Th17 cells is a hallmark of autoimmune diseases, including multiple sclerosis (MS). However, the molecular mechanisms underlying Treg and Th17 imbalance in central nervous system (CNS) autoimmunity remain largely unclear. Identifying factors which drive this imbalance is of high clinical interest. Here, we report a major disease-promoting role for microRNA-92a (miR-92a) in CNS autoimmunity. MiR-92a was elevated in experimental autoimmune encephalomyelitis (EAE), and its loss attenuated EAE. Mechanistically, miR-92a mediated EAE susceptibility in a T cell-intrinsic manner by restricting Treg induction and suppressive capacity, while supporting Th17 responses, by directly repressing the transcription factor, Foxo1. Although miR-92a did not directly alter Th1 differentiation, it appeared to indirectly promote Th1 cells by inhibiting Treg responses. Correspondingly, miR-92a inhibitor therapy ameliorated EAE by concomitantly boosting Treg cell responses and dampening inflammatory T cell responses. Analogous to mice, miR-92a was elevated in MS patient CD4+ T cells, and miR-92a silencing in patient T cells promoted Treg development whereas it limited Th17 differentiation. Together, our results demonstrate that miR-92a drives CNS autoimmunity by sustaining the Treg/Th17 imbalance and implicate miR-92a as a potential therapeutic target for MS.
Mai Fujiwara, Radhika Raheja, Lucien P. Garo, Amrendra K. Ajay, Ryoko Kadowaki-Saga, Sukrut H. Karandikar, Galina Gabriely, Rajesh Krishnan, Vanessa Beynon, Anu Paul, Amee Patel, Shrishti Saxena, Dan Hu, Brian C. Healy, Tanuja Chitnis, Roopali Gandhi, Howard L. Weiner, Gopal Murugaiyan
Targeted monoclonal antibody (mAb) therapies show great promise for the treatment of transplant rejection and autoimmune diseases by inducing more specific immunomodulatory effects than broadly immunosuppressive drugs routinely used. We recently described the therapeutic advantage of targeting CD45RC, expressed at high levels by conventional T cells (Tconv, CD45RChigh), their precursors and terminally differentiated T (TEMRA) cells, but not by regulatory T cells (Tregs, CD45RClow/-). We demonstrated efficacy of anti-CD45RC mAb treatment in transplantation but its potential has not been examined in autoimmune diseases. APECED is a rare genetic syndrome caused by loss-of-function mutations of the key central tolerance mediator, autoimmune regulator (AIRE) leading to abnormal auto-reactive T cell responses and autoantibodies production. Herein, we showed that, in a rat model of APECED syndrome, anti-CD45RC mAb was effective both as prevention and treatment of autoimmune manifestations and inhibited autoantibody development. Anti-CD45RC mAb intervention depleted CD45RChigh T cells, inhibited CD45RChigh B cells, and restored the Treg/Tconv ratio and the altered Tregs transcriptomic profile. In APECED patients, CD45RC was significantly increased in peripheral blood T cells and lesioned organs from APECED patients were infiltrated by CD45RChigh cells. Our observations highlight the potential role for CD45RChigh cells in the pathogenesis of experimental and human APECED syndrome and the potential of anti-CD45RC antibody treatment.
Marine Besnard, Céline Sérazin, Jason Ossart, Anne Moreau, Nadège Vimond, Léa Flippe, Hanna Sein, Grace A. Smith, Stefania Pittaluga, Elise M.N. Ferré, Claire Usal, Ignacio Anegon, Annamari Ranki, Michail S. Lionakis, Pärt Peterson, Carole Guillonneau
BMP6 is a central cytokine in the induction of Sjögren's syndrome (SS)-associated secretory hypofunction. However, the upstream initiation leading to the production of this cytokine in SS is unknown. In this study, RNA in situ hybridization on salivary gland sections taken from SS patients indicated monocytic lineage cells as a cellular source of BMP6. RNA sequencing data from human salivary glands suggested TLR4 signaling was an upstream regulator of BMP6, which was confirmed by in vitro cell assays and single-cell transcriptomics of human PBMCs. Further investigation showed HSP70 was an endogenous natural TLR4 ligand that stimulated BMP6 expression in SS. Release of HSP70 from epithelial cells could be triggered by overexpression of lysosome-associated membrane protein 3 (LAMP3), a protein also associated with SS in several transcriptome studies. In vitro studies supported HSP70 was released as a result of lysosomal exocytosis initiated by LAMP3 expression, and reverse transcription PCR on RNA from minor salivary glands of SS patients confirmed a positive correlation between BMP6 and LAMP3 expression. BMP6 expression could be experimentally induced in mice by overexpression of LAMP3, which developed an SS-like phenotype. The newly identified LAMP3/HSP70/BMP6 axis provided an etiological model for SS gland dysfunction and autoimmunity.
Ying-Qian Mo, Hiroyuki Nakamura, Tsutomu Tanaka, Toshio Odani, Paola Perez, Youngmi Ji, Benjamin N. French, Thomas J.F. Pranzatelli, Drew G. Michael, Hongen Yin, Susan S. Chow, Maryam Khalaj, Sandra A. Afione, Changyu Zheng, Fabiola Reis Oliveira, Ana Carolina F. Motta, Alfredo Ribeiro-Silva, Eduardo M. Rocha, Cuong Q. Nguyen, Masayuki Noguchi, Tatsuya Atsumi, Blake M. Warner, John A. Chiorini
Inborn errors of nucleic acid metabolism often cause aberrant activation of nucleic acid sensing pathways, leading to autoimmune or autoinflammatory diseases. The SKIV2L RNA exosome is cytoplasmic RNA degradation machinery that was thought to be essential for preventing the self-RNA–mediated interferon (IFN) response. Here, we demonstrate the physiological function of SKIV2L in mammals. We found that Skiv2l deficiency in mice disrupted epidermal and T cell homeostasis in a cell-intrinsic manner independently of IFN. Skiv2l-deficient mice developed skin inflammation and hair abnormality, which were also observed in a SKIV2L-deficient patient. Epidermis-specific deletion of Skiv2l caused hyperproliferation of keratinocytes and disrupted epidermal stratification, leading to impaired skin barrier with no appreciable IFN activation. Moreover, Skiv2l-deficient T cells were chronically hyperactivated and these T cells attacked lesional skin as well as hair follicles. Mechanistically, SKIV2L loss activated the mTORC1 pathway in both keratinocytes and T cells. Both systemic and topical rapamycin treatment of Skiv2l-deficient mice ameliorated epidermal hyperplasia and skin inflammation. Together, we demonstrate that mTORC1, a classical nutrient sensor, also senses cytoplasmic RNA quality control failure and drives autoinflammatory disease. We also propose SKIV2L-associated trichohepatoenteric syndrome (THES) as a new mTORopathy for which sirolimus may be a promising therapy.
Kun Yang, Jie Han, Mayumi Asada, Jennifer G. Gill, Jason Y. Park, Meghana N. Sathe, Jyothsna Gattineni, Tracey Wright, Christian A. Wysocki, M. Teresa de la Morena, Luis A. Garza, Nan Yan
BACKGROUND The temporal clustering of a cancer diagnosis with dermatomyositis (DM) onset is strikingly associated with autoantibodies against transcriptional intermediary factor 1-γ (TIF1-γ). Nevertheless, many patients with anti–TIF1-γ antibodies never develop cancer. We investigated whether additional autoantibodies are found in anti–TIF1-γ–positive patients without cancer.METHODS Using a proteomic approach, we defined 10 previously undescribed autoantibody specificities in 5 index anti–TIF1-γ–positive DM patients without cancer. These were subsequently examined in discovery (n = 110) and validation (n = 142) cohorts of DM patients with anti–TIF1-γ autoantibodies.RESULTS We identified 10 potentially novel autoantibodies in anti–TIF1-γ–positive DM patients, 6 with frequencies ranging from 3% to 32% in 2 independent DM cohorts. Autoantibodies recognizing cell division cycle and apoptosis regulator protein 1 (CCAR1) were the most frequent, and were significantly negatively associated with contemporaneous cancer (discovery cohort OR 0.27 [95% CI 0.7–1.00], P = 0.050; validation cohort OR 0.13 [95% CI 0.03–0.59], P = 0.008). When cancer did emerge, it occurred significantly later in anti-CCAR1–positive compared with anti-CCAR1–negative patients (median time from DM onset 4.3 vs. 0.85 years, respectively; P = 0.006). Cancers that emerged were more likely to be localized (89% of anti-CCAR1–positive cancers presenting at stage 0 or 1 compared with 42% of patients without anti-CCAR1 antibodies, P = 0.02). As the number of additional autoantibody specificities increased in anti–TIF1-γ–positive DM patients, the frequency of cancer decreased (P < 0.001).CONCLUSION As the diversity of immune responses in anti–TIF1-γ DM patients increases, the likelihood of cancer emerging decreases. Our findings have important relevance for cancer risk stratification in DM patients and for understanding natural immune regulation of cancer in humans.TRIAL REGISTRATION Not applicable.FUNDING SOURCES The NIH, the Donald B. and Dorothy L. Stabler Foundation, and the Huayi and Siuling Zhang Discovery Fund.
David F. Fiorentino, Christopher A. Mecoli, Matthew C. Rosen, Lorinda S. Chung, Lisa Christopher-Stine, Antony Rosen, Livia Casciola-Rosen
T cells are central to the pathogenesis of lupus nephritis (LN), a common complication of systemic lupus erythematosus (SLE). CD6 and its ligand, activated leukocyte cell adhesion molecule (ALCAM), are involved in T cell activation and trafficking. Previously, we showed that soluble ALCAM is increased in urine (uALCAM) of patients with LN, suggesting that this pathway contributes to disease. To investigate, uALCAM was examined in 1038 patients with SLE and LN from 5 ethnically diverse cohorts; CD6 and ALCAM expression was assessed in LN kidney cells; and disease contribution was tested via antibody blockade of CD6 in murine models of SLE and acute glomerulonephritis. Extended cohort analysis offered resounding validation of uALCAM as a biomarker that distinguishes active renal involvement in SLE, irrespective of ethnicity. ALCAM was expressed by renal structural cells whereas CD6 expression was exclusive to T cells, with elevated numbers of CD6+ and ALCAM+ cells in patients with LN. CD6 blockade in models of spontaneous lupus and immune-complex glomerulonephritis revealed significant decreases in immune cells, inflammatory markers, and disease measures. Our data demonstrate the contribution of the CD6/ALCAM pathway to LN and SLE, supporting its use as a disease biomarker and therapeutic target.
Samantha A. Chalmers, Rajalakshmy Ayilam Ramachandran, Sayra J. Garcia, Evan Der, Leal Herlitz, Jeanette Ampudia, Dalena Chu, Nicole Jordan, Ting Zhang, Ioannis Parodis, Iva Gunnarsson, Huihua Ding, Nan Shen, Michelle Petri, Chi Chiu Mok, Ramesh Saxena, Krishna R. Polu, Stephen Connelly, Cherie T. Ng, Chandra Mohan, Chaim Putterman
Ulcerating skin lesions are manifestations of human ISG15 deficiency, a type I interferonopathy. However, chronic inflammation may not be their exclusive cause. We describe two siblings with recurrent skin ulcers that healed with scar formation upon corticosteroid treatment. Both had a homozygous nonsense mutation in the ISG15 gene, leading to unstable ISG15 protein lacking the functional domain. We characterized ISG15-/- dermal fibroblasts, HaCaT keratinocytes, and human induced pluripotent stem cell-derived vascular endothelial cells. ISG15-deficient cells exhibited the expected hyperinflammatory phenotype, but also dysregulated expression of molecules critical for connective tissue and epidermis integrity, including reduced collagens and adhesion molecules, but increased matrix metalloproteases. ISG15-/- fibroblasts exhibited elevated ROS levels and reduced ROS scavenger expression. As opposed to hyperinflammation, defective collagen and integrin synthesis was not rescued by conjugation-deficient ISG15. Cell migration was retarded in ISG15-/- fibroblasts and HaCaT keratinocytes, but normalized under ruxolitinib treatment. Desmosome density was reduced in an ISG15-/- 3D epidermis model. Additionally, there were loose architecture and reduced collagen and desmoglein expression, which could be reversed by treatment with ruxolitinib/doxycycline/TGF-β1. These results reveal critical roles of ISG15 in maintaining cell migration and epidermis and connective tissue homeostasis, whereby the latter likely requires its conjugation to yet unidentified targets.
Muhammad Nasir Hayat Malik, Syed F. Hassnain Waqas, Jana Zeitvogel, Jingyuan Cheng, Robert Geffers, Zeinab Abu-Elbaha Gouda, Ahmed Mahrous Elsaman, Ahmed R. Radwan, Matthias Schefzyk, Peter Braubach, Bernd Auber, Ruth Olmer, Mathias Müsken, Lennart M. Roesner, Gisa Gerold, Sven Schuchardt, Sylvia Merkert, Ulrich Martin, Felix Meissner, Thomas Werfel, Frank Pessler
While negative selection of developing B cells in the periphery is well described, yet poorly understood, evidence of naïve B cell positive selection remains elusive. Using two humanized mouse models, we demonstrate that there is strong skewing of expressed immunoglobulin repertoire upon transit into the peripheral naïve B cell pool. This positive selection of expanded naïve B cells in humanized mice resembled that in healthy donors and was independent of autologous thymic tissue. In contrast, negative selection of autoreactive B cells required thymic-derived regulatory T cells (Tregs) and MHC class II-restricted self-antigen presentation by B cells. Indeed, both defective MHC class II expression on their B cells in rare bare lymphocyte syndrome patients or prevention of self-antigen presentation via HLA-DM inhibition in humanized mice result in the production of autoreactive naïve B cells. These latter observations suggest that Tregs repress autoreactive naïve B cells continuously produced by the bone marrow. Thus, a model emerges in which both positive and negative selection shape the human naïve B cell repertoire and that each process is mediated by fundamentally different molecular and cellular mechanisms.
Jeff W. Chen, Jean-Nicolas Schickel, Nikolaos Tsakiris, Joel Sng, Florent Arbogast, Delphine Bouis, Daniele Parisi, Ruchi Gera, Joshua M. Boeckers, Fabien R. Delmotte, Margaret Veselits, Catharina Schuetz, Eva-Maria Jacobsen, Carsten Posovszky, Ansgar S. Schulz, Klaus Schwarz, Marcus R. Clark, Laurence Menard, Eric Meffre
The secreted protein DEL-1 regulates inflammatory cell recruitment and protects against inflammatory pathologies in animal models. Here, we investigated DEL-1 in inflammatory arthritis using collagen-induced arthritis (CIA) and collagen Ab-induced arthritis (CAIA). In both models, mice with endothelial-specific overexpression of DEL-1 were protected from arthritis relative to WT controls, while arthritis was exacerbated in DEL-1-deficient mice. Compared to WT controls, mice with collagen VI promoter-driven overexpression of DEL-1 in mesenchymal cells were protected against CIA but not CAIA, suggesting a role for DEL-1 in the induction of the arthritogenic Ab response. Indeed, DEL-1 was expressed in perivascular stromal cells of the lymph nodes and inhibited T follicular helper (Tfh) and germinal center B cell responses. Mechanistically, DEL-1 inhibited dendritic cell-dependent induction of Tfh cells by targeting the LFA-1 integrin on T cells. Overall, DEL-1 restrained arthritis through a dual mechanism, one acting locally in the joints and associated with the anti-recruitment function of endothelial cell-derived DEL-1; the other mechanism acting systemically in the lymph nodes and associated with the ability of stromal cell-derived DEL-1 to restrain Tfh responses. DEL-1 may thus be a promising novel therapeutic for the treatment of inflammatory arthritis.
Hui Wang, Xiaofei Li, Tetsuhiro Kajikawa, Jieun Shin, Jong-Hyung Lim, Ioannis Kourtzelis, Kosuke Nagai, Jonathan Korostoff, Sylvia Grossklaus, Ronald Naumann, Triantafyllos Chavakis, George Hajishengallis
No posts were found with this tag.