Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

AIDS/HIV

  • 156 Articles
  • 2 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 14
  • 15
  • 16
  • Next →
Induction of prolonged survival of CD4+ T lymphocytes by intermittent IL-2 therapy in HIV-infected patients
Joseph A. Kovacs, … , Dimiter S. Dimitrov, H. Clifford Lane
Joseph A. Kovacs, … , Dimiter S. Dimitrov, H. Clifford Lane
Published August 1, 2005
Citation Information: J Clin Invest. 2005;115(8):2139-2148. https://doi.org/10.1172/JCI23196.
View: Text | PDF

Induction of prolonged survival of CD4+ T lymphocytes by intermittent IL-2 therapy in HIV-infected patients

  • Text
  • PDF
Abstract

HIV infection leads to decreases in the number of CD4+ T lymphocytes and an increased risk for opportunistic infections and neoplasms. The administration of intermittent cycles of IL-2 to HIV-infected patients can lead to profound increases (often greater than 100%) in CD4 cell number and percentage. Using in vivo labeling with 2H-glucose and BrdU, we have been able to demonstrate that, although therapy with IL-2 leads to high levels of proliferation of CD4 as well as CD8 lymphocytes, it is a remarkable preferential increase in survival of CD4 cells (with half-lives that can exceed 3 years) that is critical to the sustained expansion of these cells. This increased survival was time-dependent: the median half-life, as determined by semiempirical modeling, of labeled CD4 cells in 6 patients increased from 1.7 weeks following an early IL-2 cycle to 28.7 weeks following a later cycle, while CD8 cells showed no change in the median half-life. Examination of lymphocyte subsets demonstrated that phenotypically naive (CD27+CD45RO–) as well as central memory (CD27+CD45RO+) CD4 cells were preferentially expanded, suggesting that IL-2 can help maintain cells important for host defense against new antigens as well as for long-term memory to opportunistic pathogens.

Authors

Joseph A. Kovacs, Richard A. Lempicki, Igor A. Sidorov, Joseph W. Adelsberger, Irini Sereti, William Sachau, Grace Kelly, Julia A. Metcalf, Richard T. Davey Jr., Judith Falloon, Michael A. Polis, Jorge Tavel, Randy Stevens, Laurie Lambert, Douglas A. Hosack, Marjorie Bosche, Haleem J. Issaq, Stephen D. Fox, Susan Leitman, Michael W. Baseler, Henry Masur, Michele Di Mascio, Dimiter S. Dimitrov, H. Clifford Lane

×

HIV-1 fusion peptide targets the TCR and inhibits antigen-specific T cell activation
Francisco J. Quintana, … , Irun R. Cohen, Yechiel Shai
Francisco J. Quintana, … , Irun R. Cohen, Yechiel Shai
Published August 1, 2005
Citation Information: J Clin Invest. 2005;115(8):2149-2158. https://doi.org/10.1172/JCI23956.
View: Text | PDF

HIV-1 fusion peptide targets the TCR and inhibits antigen-specific T cell activation

  • Text
  • PDF
Abstract

The fusion peptide (FP) in the N terminus of the HIV envelope glycoprotein, gp41, functions together with other gp41 domains to fuse the virion with the host cell membrane. We now report that FP colocalizes with CD4 and TCR molecules, coprecipitates with the TCR, and inhibits antigen-specific T cell proliferation and proinflammatory cytokine secretion in vitro. These effects are specific: T cell activation by PMA/ionomycin or mitogenic antibodies is not affected by FPs, and FPs do not interfere with antigen-presenting cell function. In vivo, FPs inhibit the activation of arthritogenic T cells in the autoimmune disease model of adjuvant arthritis and reduce the disease-associated IFN-γ response. Hence, FPs might play 2 roles in HIV infection: mediating membrane fusion while downregulating T cell responses to itself that could block infection. Disassociated from HIV, however, the FP molecule provides a novel reagent for downregulating undesirable immune responses, exemplified here by adjuvant arthritis.

Authors

Francisco J. Quintana, Doron Gerber, Sally C. Kent, Irun R. Cohen, Yechiel Shai

×

Antiinflammatory profiles during primary SIV infection in African green monkeys are associated with protection against AIDS
Christopher Kornfeld, … , Ousmane M. Diop, Michaela C. Müller-Trutwin
Christopher Kornfeld, … , Ousmane M. Diop, Michaela C. Müller-Trutwin
Published May 2, 2005
Citation Information: J Clin Invest. 2005;115(5):1389-1389. https://doi.org/10.1172/JCI23006C1.
View: Text | PDF | Amended Article

Antiinflammatory profiles during primary SIV infection in African green monkeys are associated with protection against AIDS

  • Text
  • PDF
Abstract

Authors

Christopher Kornfeld, Mickaël J.-Y. Ploquin, Ivona Pandrea, Abdourahmane Faye, Richard Onanga, Cristian Apetrei, Virginie Poaty-Mavoungou, Pierre Rouquet, Jérôme Estaquier, Lorenzo Mortara, Jean-François Desoutter, Cécile Butor, Roger Le Grand, Pierre Roques, François Simon, Françoise Barré-Sinoussi, Ousmane M. Diop, Michaela C. Müller-Trutwin

×

Antiinflammatory profiles during primary SIV infection in African green monkeys are associated with protection against AIDS
Christopher Kornfeld, … , Ousmane M. Diop, Michaela C. Müller-Trutwin
Christopher Kornfeld, … , Ousmane M. Diop, Michaela C. Müller-Trutwin
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):1082-1091. https://doi.org/10.1172/JCI23006.
View: Text | PDF | Corrigendum

Antiinflammatory profiles during primary SIV infection in African green monkeys are associated with protection against AIDS

  • Text
  • PDF
Abstract

T cell activation levels in HIV infection are predictive of AIDS progression. We searched for the immunological correlates of protection against disease progression by studying the early stages of nonpathogenic SIV infection in African green monkeys (SIVagm). The African green monkeys (AGMs) displayed high peak viremias and a transient decline in levels of blood CD4+ and CD8+ T cells between days 5 and 17 after infection. A concomitant increase in levels of CD4+DR+, CD8+DR+, and CD8+CD28– cells was detected. After the third week, T cell activation returned to baseline levels, which suggested a protective downregulation of T cell activation. A very early (24 hours after infection) and strong induction of TGF-β1 and FoxP3 expression was detected and correlated with increases in levels of CD4+CD25+ and CD8+CD25+ T cells. This was followed by a significant increase in levels of IL-10, whereas IFN-γ gene upregulation was more transient, and levels of TNF-α and MIP-1α/β transcripts did not increase in either blood or tissues. The profiles were significantly different during primary SIV infection in macaques (SIVmac); that is, there was a delayed increase in IL-10 levels accompanied by moderate and persistent increases in TGF-β levels. Together, our data show that SIVagm infection is associated with an immediate antiinflammatory environment and suggest that TGF-β may participate in the generation of Tregs, which may prevent an aberrant chronic T cell hyperactivation.

Authors

Christopher Kornfeld, Mickaël J.-Y. Ploquin, Ivona Pandrea, Abdourahmane Faye, Richard Onanga, Cristian Apetrei, Virginie Poaty-Mavoungou, Pierre Rouquet, Jérôme Estaquier, Lorenzo Mortara, Jean-François Desoutter, Cécile Butor, Roger Le Grand, Pierre Roques, François Simon, Françoise Barré-Sinoussi, Ousmane M. Diop, Michaela C. Müller-Trutwin

×

Dual role of α-defensin-1 in anti–HIV-1 innate immunity
Theresa L. Chang, … , Armando DelPortillo, Mary E. Klotman
Theresa L. Chang, … , Armando DelPortillo, Mary E. Klotman
Published March 1, 2005
Citation Information: J Clin Invest. 2005;115(3):765-773. https://doi.org/10.1172/JCI21948.
View: Text | PDF

Dual role of α-defensin-1 in anti–HIV-1 innate immunity

  • Text
  • PDF
Abstract

α-Defensins are abundant antimicrobial peptides in polymorphonuclear leukocytes and play an important role in innate immunity. We have previously shown that α-defensin-1 can inhibit HIV-1 replication following viral entry. Here we examined the molecular mechanism(s) of α-defensin-1–mediated HIV-1 inhibition. α-Defensin-1 had a direct effect on HIV-1 virions at a low MOI in the absence of serum. The direct effect on HIV-1 virions was abolished by the presence of serum or an increase in virus particles. Studying the kinetics of the HIV life cycle revealed that α-defensin-1 inhibited steps following reverse transcription and integration. Analysis of PKC phosphorylation in primary CD4+ T cells in response to α-defensin-1 indicated that α-defensin-1 inhibited PKC activity. Pretreatment of infected CD4+ T cells with a PKC activator, bryostatin 1, partially reversed α-defensin-1–mediated HIV inhibition. Like α-defensin-1, the PKC isoform–selective inhibitor Go6976 blocked HIV-1 infection in a dose-dependent manner. Furthermore, kinetic studies and analysis of HIV-1 products indicated that α-defensin-1 and Go6976 blocked HIV-1 infection at similar stages in its life cycle, including nuclear import and transcription. Taken together, our studies demonstrate that, in the absence of serum, α-defensin-1 may act directly on the virus, but, in the presence of serum, its effects are on the cell, where it inhibits HIV-1 replication. At least 1 of the cellular effects associated with HIV inhibition is interference with PKC signaling in primary CD4+ T cells. Studying the complex function of α-defensin-1 in innate immunity against HIV has implications for prevention as well as therapeutics.

Authors

Theresa L. Chang, Jesus Vargas Jr., Armando DelPortillo, Mary E. Klotman

×

HIV-1 clade promoters strongly influence spatial and temporal dynamics of viral replication in vivo
Mireille Centlivre, … , Simon Wain-Hobson, Monica Sala
Mireille Centlivre, … , Simon Wain-Hobson, Monica Sala
Published February 1, 2005
Citation Information: J Clin Invest. 2005;115(2):348-358. https://doi.org/10.1172/JCI22873.
View: Text | PDF

HIV-1 clade promoters strongly influence spatial and temporal dynamics of viral replication in vivo

  • Text
  • PDF
Abstract

Although the primary determinant of cell tropism is the interaction of viral envelope or capsid proteins with cellular receptors, other viral elements can strongly modulate viral replication. While the HIV-1 promoter is polymorphic for a variety of transcription factor binding sites, the impact of these polymorphisms on viral replication in vivo is not known. To address this issue, we engineered isogenic SIVmac239 chimeras harboring the core promoter/enhancer from HIV-1 clades B, C, and E. Here it is shown that the clade C and E core promoters/enhancers bear a noncanonical activator protein–1 (AP-1) binding site, absent from the corresponding clade B region. Relative ex vivo replication of chimeras was strongly dependent on the tissue culture system used. Notably, in thymic histocultures, replication of the clade C chimera was favored by IL-7 enrichment, which suggests that the clade C polymorphism in the AP-1 and NF-κB binding sites is involved. Simultaneous infection of rhesus macaques with the 3 chimeras revealed a strong predominance of the clade C chimera during primary infection. Thereafter, the B chimera dominated in all tissues. These data show that the clade C promoter is particularly adapted to sustain viral replication in primary viremia and that clade-specific promoter polymorphisms constitute a major determinant for viral replication.

Authors

Mireille Centlivre, Peter Sommer, Marie Michel, Raphaël Ho Tsong Fang, Sandrine Gofflo, Jenny Valladeau, Nathalie Schmitt, Françoise Thierry, Bruno Hurtrel, Simon Wain-Hobson, Monica Sala

×

HIV-1–specific CD4+ T lymphocyte turnover and activation increase upon viral rebound
Thomas J. Scriba, … , Michaela Lucas, Rodney E. Phillips
Thomas J. Scriba, … , Michaela Lucas, Rodney E. Phillips
Published February 1, 2005
Citation Information: J Clin Invest. 2005;115(2):443-450. https://doi.org/10.1172/JCI23084.
View: Text | PDF

HIV-1–specific CD4+ T lymphocyte turnover and activation increase upon viral rebound

  • Text
  • PDF
Abstract

HIV-specific CD4+ T helper lymphocytes are preferred targets for infection. Although complete interruption of combination antiretroviral therapy (ART) can form part of therapeutic manipulations, there is grave concern that the resumption of viral replication might destroy, perhaps irreversibly, these T helper populations. High viremia blocks the proliferation capacity of HIV-specific helper cells. However, cytokine production assays imply that some antigen-specific effector function is retained. Despite this careful work, it remains unclear whether the return of HIV-1 replication physically destroys HIV-1–specific T helper cells in the peripheral blood. Difficulties in producing stable peptide-MHC class II complexes and the very low frequencies of antigen-specific CD4+ T cells have delayed the application of this powerful technique. Here we employ HLA class II tetramers and validate a sensitive, quantitative cell-enrichment technique to detect HIV-1 T helper cells. We studied patients with early-stage HIV infection who were given a short, fixed course of ART as part of a clinical study. We did not find significant deletion of these cells from the peripheral circulation when ART was stopped and unfettered HIV replication returned. The turnover of these virus-specific cells increased and they adopted an effector phenotype when viremia returned.

Authors

Thomas J. Scriba, Hua-Tang Zhang, Helen L. Brown, Annette Oxenius, Norbert Tamm, Sarah Fidler, Julie Fox, Jonathan N. Weber, Paul Klenerman, Cheryl L. Day, Michaela Lucas, Rodney E. Phillips

×

IL-7 is a potent and proviral strain–specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART
Feng-Xiang Wang, … , Roger J. Pomerantz, Giuseppe Nunnari
Feng-Xiang Wang, … , Roger J. Pomerantz, Giuseppe Nunnari
Published January 3, 2005
Citation Information: J Clin Invest. 2005;115(1):128-137. https://doi.org/10.1172/JCI22574.
View: Text | PDF

IL-7 is a potent and proviral strain–specific inducer of latent HIV-1 cellular reservoirs of infected individuals on virally suppressive HAART

  • Text
  • PDF
Abstract

The persistence of HIV-1 in virally suppressed infected individuals on highly active antiretroviral therapy (HAART) remains a major therapeutic problem. The use of cytokines has been envisioned as an additional therapeutic strategy to stimulate latent proviruses in these individuals. Immune activation therapy using IL-2 has shown some promise. In the present study, we found that IL-7 was significantly more effective at enhancing HIV-1 proviral reactivation than either IL-2 alone or IL-2 combined with phytohemagglutinin (PHA) in CD8-depleted PBMCs. IL-7 also showed a positive trend for inducing proviral reactivation from resting CD4+ T lymphocytes from HIV-1–infected patients on suppressive HAART. Moreover, the phylogenetic analyses of viral envelope gp120 genes from induced viruses indicated that distinct proviral quasispecies had been activated by IL-7, as compared with those activated by the PHA/IL-2 treatment. These studies thus demonstrate that different activators of proviral latency may perturb and potentially deplete only selected, specific portions of the proviral archive in virally suppressed individuals. The known immunomodulatory effects of IL-7 could be combined with its ability to stimulate HIV-1 replication from resting CD4+ T lymphocytes, in addition to other moieties, to potentially deplete HIV-1 reservoirs and lead to the rational design of immune-antiretroviral approaches.

Authors

Feng-Xiang Wang, Yan Xu, Julie Sullivan, Emily Souder, Elias G. Argyris, Edward A. Acheampong, Jaime Fisher, Maria Sierra, Michael M. Thomson, Rafael Najera, Ian Frank, Joseph Kulkosky, Roger J. Pomerantz, Giuseppe Nunnari

×

Identification of cellular deoxyhypusine synthase as a novel target for antiretroviral therapy
Ilona Hauber, … , Thomas Harrer, Joachim Hauber
Ilona Hauber, … , Thomas Harrer, Joachim Hauber
Published January 3, 2005
Citation Information: J Clin Invest. 2005;115(1):76-85. https://doi.org/10.1172/JCI21949.
View: Text | PDF

Identification of cellular deoxyhypusine synthase as a novel target for antiretroviral therapy

  • Text
  • PDF
Abstract

The introduction of highly active antiretroviral therapy (HAART) has significantly decreased morbidity and mortality among patients infected with HIV-1. However, HIV-1 can acquire resistance against all currently available antiretroviral drugs targeting viral reverse transcriptase, protease, and gp41. Moreover, in a growing number of patients, the development of multidrug-resistant viruses compromises HAART efficacy and limits therapeutic options. Therefore, it is an ongoing task to develop new drugs and to identify new targets for antiretroviral therapy. Here, we identified the guanylhydrazone CNI-1493 as an efficient inhibitor of human deoxyhypusine synthase (DHS). By inhibiting DHS, this compound suppresses hypusine formation and, thereby, activation of eukaryotic initiation factor 5A (eIF-5A), a cellular cofactor of the HIV-1 Rev regulatory protein. We demonstrate that inhibition of DHS by CNI-1493 or RNA interference efficiently suppressed the retroviral replication cycle in cell culture and primary cells. We show that CNI-1493 inhibits replication of macrophage- and T cell–tropic laboratory strains, clinical isolates, and viral strains with high-level resistance to inhibitors of viral protease and reverse transcriptase. Moreover, no measurable drug-induced adverse effects on cell cycle transition, apoptosis, and general cytotoxicity were observed. Therefore, human DHS represents a novel and promising drug target for the development of advanced antiretroviral therapies, particularly for the inhibition of multidrug-resistant viruses.

Authors

Ilona Hauber, Dorian Bevec, Jochen Heukeshoven, Friedrich Krätzer, Florian Horn, Axel Choidas, Thomas Harrer, Joachim Hauber

×

The HIV protease inhibitor ritonavir blocks osteoclastogenesis and function by impairing RANKL-induced signaling
Michael W.-H. Wang, … , Steven L. Teitelbaum, F. Patrick Ross
Michael W.-H. Wang, … , Steven L. Teitelbaum, F. Patrick Ross
Published July 15, 2004
Citation Information: J Clin Invest. 2004;114(2):206-213. https://doi.org/10.1172/JCI15797.
View: Text | PDF

The HIV protease inhibitor ritonavir blocks osteoclastogenesis and function by impairing RANKL-induced signaling

  • Text
  • PDF
Abstract

Highly active antiretroviral therapy (HAART), which includes HIV protease inhibitors (PIs), has been associated with bone demineralization. To determine if this complication reflects accelerated resorptive activity, we studied the impact of two common HIV PIs, ritonavir and indinavir, on osteoclast formation and function. Surprisingly, we find that ritonavir, but not indinavir, inhibits osteoclast differentiation in a reversible manner and also abrogates bone resorption by disrupting the osteoclast cytoskeleton, without affecting cell number. Ritonavir given in vivo completely blunts parathyroid hormone–induced osteoclastogenesis in mice, which confirms that the drug is bone sparing. In keeping with its antiresorptive properties, ritonavir impairs receptor activator of nuclear factor κB ligand–induced (RANKL-induced) activation of NF-κB and Akt signaling pathways, both critical to osteoclast formation and function. In particular, ritonavir is found to inhibit RANKL-induced Akt signaling by disrupting the recruitment of TNF receptor–associated factor 6/c-Src complex to lipid rafts. Thus, ritonavir may represent a bone-sparing PI capable of preventing development of osteopenia in patients currently on HAART.

Authors

Michael W.-H. Wang, Shi Wei, Roberta Faccio, Sunao Takeshita, Pablo Tebas, William G. Powderly, Steven L. Teitelbaum, F. Patrick Ross

×
  • ← Previous
  • 1
  • 2
  • …
  • 14
  • 15
  • 16
  • Next →
Insight into CD8+ T cell expansion during HIV-1 infection
Souheil-Antoine Younes and colleagues provide evidence that IL-15 is involved in the expansion of CD8+ T cells in chronic HIV infection...
Published June 20, 2016
Scientific Show StopperAIDS/HIV

Designer proteins to hunt and kill latent HIV-1
Julia Sung, Joy Pickeral, Liquin Liu and colleagues developed designer proteins that detect and destroy rare populations of HIV-infected cells…
Published September 28, 2015
Scientific Show StopperAIDS/HIV
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts