Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Issue published April 1, 2005 Previous issue | Next issue

  • Volume 115, Issue 4
Go to section:
  • In this issue
  • Editorial
  • Book Reviews
  • Personal perspective
  • Science in Medicine
  • News
  • Commentaries
  • Research Articles
  • Corrigenda
In this issue
In This Issue
/articles/view/120020
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):789-789. https://doi.org/10.1172/JCI120020.
View: Text | PDF

In This Issue

  • Text
  • PDF
Abstract

Authors

×
Editorial
Sex and the university system
Andrew R. Marks
Andrew R. Marks
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):790-790. https://doi.org/10.1172/JCI24841.
View: Text | PDF

Sex and the university system

  • Text
  • PDF
Abstract

The recent uproar over comments about women in science made by Harvard University President Dr. Lawrence Summers has helped focus much needed attention on an issue of great importance. Whatever motivated Dr. Summers to make statements about the “different availability of aptitude at the high end” as a possible explanation for the lack of gender diversity in science and engineering, we should all thank him for putting the question of why there are not more women in science where it belongs — front and center.

Authors

Andrew R. Marks

×
Book Reviews
Darwinian heresies
Russell Doolittle
Russell Doolittle
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):793-794. https://doi.org/10.1172/JCI24869.
View: Text | PDF

Darwinian heresies

  • Text
  • PDF
Abstract

Authors

Russell Doolittle

×

Chemical consequences Environmental mutagens, scientist activism, and the rise of genetic toxicology
Jane S. Allen
Jane S. Allen
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):794-794. https://doi.org/10.1172/JCI24868.
View: Text | PDF

Chemical consequences Environmental mutagens, scientist activism, and the rise of genetic toxicology

  • Text
  • PDF
Abstract

Authors

Jane S. Allen

×
Personal perspective
The several Cs of translational clinical research
David G. Nathan
David G. Nathan
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):795-797. https://doi.org/10.1172/JCI24753.
View: Text | PDF

The several Cs of translational clinical research

  • Text
  • PDF
Abstract

Perhaps because I am a veteran of the “good old days” (they were really quite bad), young physicians who hope to become clinical investigators often ask me how they might establish their careers. Many are more than a little worried about their futures and often have trouble envisioning a career path that is financially secure for themselves and their families. The grumbling of clinical investigators a few years their senior enhances their angst. So I try to encourage these young physicians because I know the great intellectual (if not monetary) rewards of the field and because I know that the future of medicine absolutely depends on clinical investigators. The following is what I try to say to them.

Authors

David G. Nathan

×
Science in Medicine
Immunopathogenesis and therapy of cutaneous T cell lymphoma
Ellen J. Kim, … , Maria Wysocka, Alain H. Rook
Ellen J. Kim, … , Maria Wysocka, Alain H. Rook
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):798-812. https://doi.org/10.1172/JCI24826.
View: Text | PDF | Corrigendum

Immunopathogenesis and therapy of cutaneous T cell lymphoma

  • Text
  • PDF
Abstract

Cutaneous T cell lymphomas (CTCLs) are a heterogenous group of lymphoproliferative disorders caused by clonally derived, skin-invasive T cells. Mycosis fungoides (MF) and Sézary syndrome (SS) are the most common types of CTCLs and are characterized by malignant CD4+/CLA+/CCR4+ T cells that also lack the usual T cell surface markers CD7 and/or CD26. As MF/SS advances, the clonal dominance of the malignant cells results in the expression of predominantly Th2 cytokines, progressive immune dysregulation in patients, and further tumor cell growth. This review summarizes recent insights into the pathogenesis and immunobiology of MF/SS and how these have shaped current therapeutic approaches, in particular the growing emphasis on enhancement of host antitumor immune responses as the key to successful therapy.

Authors

Ellen J. Kim, Stephen Hess, Stephen K. Richardson, Sara Newton, Louise C. Showe, Bernice M. Benoit, Ravi Ubriani, Carmela C. Vittorio, Jacqueline M. Junkins-Hopkins, Maria Wysocka, Alain H. Rook

×

Melanoma genetics and the development of rational therapeutics
Yakov Chudnovsky, … , Paul A. Khavari, Amy E. Adams
Yakov Chudnovsky, … , Paul A. Khavari, Amy E. Adams
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):813-824. https://doi.org/10.1172/JCI24808.
View: Text | PDF

Melanoma genetics and the development of rational therapeutics

  • Text
  • PDF
Abstract

Melanoma is a cancer of the neural crest–derived cells that provide pigmentation to skin and other tissues. Over the past 4 decades, the incidence of melanoma has increased more rapidly than that of any other malignancy in the United States. No current treatments substantially enhance patient survival once metastasis has occurred. This review focuses on recent insights into melanoma genetics and new therapeutic approaches being developed based on these advances.

Authors

Yakov Chudnovsky, Paul A. Khavari, Amy E. Adams

×
News
Long life still hard on the brain
Stacie Bloom
Stacie Bloom
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):791-791. https://doi.org/10.1172/JCI24899.
View: Text | PDF

Long life still hard on the brain

  • Text
  • PDF
Abstract

Authors

Stacie Bloom

×

Taking a (mosquito) bite out of malaria
Rick Ring
Rick Ring
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):791-791. https://doi.org/10.1172/JCI24903.
View: Text | PDF

Taking a (mosquito) bite out of malaria

  • Text
  • PDF
Abstract

Authors

Rick Ring

×

NIH hopes to see more bang for the same buck
Stacie Bloom
Stacie Bloom
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):792-792. https://doi.org/10.1172/JCI24901.
View: Text | PDF

NIH hopes to see more bang for the same buck

  • Text
  • PDF
Abstract

Authors

Stacie Bloom

×

Nabel speaks up about directing the NHLBI
Stacie Bloom
Stacie Bloom
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):792-792. https://doi.org/10.1172/JCI24902.
View: Text | PDF

Nabel speaks up about directing the NHLBI

  • Text
  • PDF
Abstract

Authors

Stacie Bloom

×
Commentaries
The pathophysiology of autoimmune blistering diseases
Kim B. Yancey
Kim B. Yancey
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):825-828. https://doi.org/10.1172/JCI24855.
View: Text | PDF

The pathophysiology of autoimmune blistering diseases

  • Text
  • PDF
Abstract

Knowledge of the pathophysiology of immunobullous diseases has been advanced by the demonstration that passive transfer of antibodies against skin autoantigens can induce blisters in experimental animals with clinical, histologic, and immunopathologic features similar to those seen in human patients. In this issue of the JCI, Liu et al. extend their earlier observations regarding an experimental murine model of bullous pemphigoid by showing that the plasminogen/plasmin signaling cascade synergizes with MMP-9 during the early phase of antibody-induced blister formation in vivo. In a separate study, Sitaru et al. show for the first time to my knowledge that passive transfer of experimental antibodies against type VII collagen create subepidermal blisters in mice that mimic those seen in patients with epidermolysis bullosa acquisita (see the related article beginning on page 870). While the articles by Liu, Sitaru, and their colleagues identify pathways of inflammation and tissue injury that, if interrupted, may abrogate blister formation, in a third study, Payne et al. utilized phage display technologies to isolate human anti-desmoglein monoclonal antibodies from a patient with pemphigus vulgaris and show that such antibodies have restricted patterns of heavy and light chain gene usage — findings suggesting that autoantibodies may represent an additional target for therapeutic interventions in patients with immunobullous diseases (see the related article beginning on page 888).

Authors

Kim B. Yancey

×

To live or die: a critical decision for the lung
G.R. Scott Budinger, Jacob I. Sznajder
G.R. Scott Budinger, Jacob I. Sznajder
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):828-830. https://doi.org/10.1172/JCI24681.
View: Text | PDF

To live or die: a critical decision for the lung

  • Text
  • PDF
Abstract

Every cell in the body expresses a set of proteins designed to trigger permeabilization of the mitochondria and cell death. Inactivation or inappropriate triggering of these pathways is increasingly recognized as a contributor to human disease. A study in this issue of the JCI demonstrates that IL-6 exerts its protective effect against the development of lung injury following exposure of mice to 95% O2 by increasing the expression of a Bcl-2–related protein, A1. This protein acts to prevent mitochondrial membrane permeabilization and cell death following exposure to hyperoxia. The data in this study lend support to the hypothesis that inappropriate triggering of cell-death pathways may contribute to the development of hyperoxic pulmonary edema, lung injury, and respiratory failure.

Authors

G.R. Scott Budinger, Jacob I. Sznajder

×

MEF2A sequence variants and coronary artery disease: a change of heart?
David Altshuler, Joel N. Hirschhorn
David Altshuler, Joel N. Hirschhorn
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):831-833. https://doi.org/10.1172/JCI24715.
View: Text | PDF

MEF2A sequence variants and coronary artery disease: a change of heart?

  • Text
  • PDF
Abstract

Rare mutations in MEF2A have been proposed as a cause of coronary artery disease (CAD) and myocardial infarction (MI). In this issue of the JCI, Pennacchio and colleagues report sequencing MEF2A in 300 patients with premature CAD and in controls. Only 1 CAD patient was found to carry a missense mutation not found in controls. The specific 21-bp deletion in MEF2A previously proposed as causal for CAD and/or MI was observed in unaffected individuals and did not segregate with CAD in families. These results do not support the hypothesis that mutations in MEF2A are a cause of CAD and/or MI but do illustrate general principles regarding the difficulty of connecting genetic variation to common diseases.

Authors

David Altshuler, Joel N. Hirschhorn

×

The fickle finger of fate
Luis de la Fuente, Jill A. Helms
Luis de la Fuente, Jill A. Helms
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):833-836. https://doi.org/10.1172/JCI24840.
View: Text | PDF

The fickle finger of fate

  • Text
  • PDF
Abstract

In this issue of the JCI, Niedermaier and colleagues demonstrate that a chromosomal inversion in mice results in dysregulation of Sonic hedgehog (Shh), such that Shh is ectopically expressed in a skeletogenic domain typically occupied by Indian hedgehog (Ihh). This molecular reversal eliminates phalangeal joint spaces, and consequently, Short digits (Dsh) heterozygotes (Dsh/+) have brachydactyly (shortened digits). Ihh is normally downregulated in regions that will become the joint space, but in Dsh/+ mice, Shh bypasses this regulatory control and persists; accordingly, cells maintain their chondrogenic fate and the developed digits are shorter than normal. The significance of these data extends far beyond the field of skeletal biology: they hint at the very real possibility that the endogenous Shh regulatory region contains a repressor designed to segregate the activity of Shh from Ihh. The existence of such a repressor provides a window into the distant past, revealing that Shh and Ihh must once have shared responsibilities in establishing tissue boundaries and orchestrating vertebrate tissue morphogenesis.

Authors

Luis de la Fuente, Jill A. Helms

×

Altered regulation of IL-2 production in systemic lupus erythematosus: an evolving paradigm
Gary M. Kammer
Gary M. Kammer
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):836-840. https://doi.org/10.1172/JCI24791.
View: Text | PDF

Altered regulation of IL-2 production in systemic lupus erythematosus: an evolving paradigm

  • Text
  • PDF
Abstract

In systemic lupus erythematosus (SLE), IL-2 production by T lymphocytes in vitro is impaired. Deficient IL-2 production may be an outcome of a primary SLE T cell disorder that is due to impaired signal transduction. In this issue of the JCI, evidence is presented that an anti-TCR/CD3 complex autoantibody present in SLE sera can bind to T cells and activate the Ca2+-calmodulin kinase IV (CaMKIV) signaling cascade, resulting in downregulation of IL-2 transcription and IL-2 production. Because IL-2 may contribute to the maintenance of T cell tolerance, deficient IL-2 production could promote a breach of T cell tolerance that results in autoantibody production in SLE.

Authors

Gary M. Kammer

×

In hypertension, the kidney is not always the heart of the matter
Michael E. Mendelsohn
Michael E. Mendelsohn
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):840-844. https://doi.org/10.1172/JCI24806.
View: Text | PDF

In hypertension, the kidney is not always the heart of the matter

  • Text
  • PDF
Abstract

Blood pressure abnormalities are thought to originate from intrinsic changes in the kidney, a concept that has been largely unchallenged for more than 4 decades. However, recent molecular, cellular, and transgenic mouse studies support an alternative hypothesis: primary abnormalities in vascular cell function can also directly cause abnormalities of blood pressure. In this issue of the JCI, Crowley and coworkers describe the application of an elegant cross-renal transplant model to type 1A angiotensin (AT1A) receptor–deficient mice and their wild-type littermates to explore the relative contributions of renal and extrarenal tissues to the low blood pressure seen in the AT1A receptor–deficient animals. Their studies further support the emerging paradigm that primary abnormalities of the vasculature can make unique, nonredundant contributions to blood pressure regulation; the findings have potentially important implications for the ways we diagnose and treat blood pressure diseases in humans.

Authors

Michael E. Mendelsohn

×

Ikaros transcription factors: flying between stress and inflammation
George P. Chrousos, Tomoshige Kino
George P. Chrousos, Tomoshige Kino
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):844-848. https://doi.org/10.1172/JCI24886.
View: Text | PDF

Ikaros transcription factors: flying between stress and inflammation

  • Text
  • PDF
Abstract

The hypothalamic-pituitary-adrenal axis (a major component of the stress system) and the immune system contribute to the maintenance of homeostasis at rest and during stress. Because of their essential roles for the survival of self and species, the activities of these systems have evolutionarily developed in parallel and are intertwined at many levels. In this issue of the JCI, Ezzat et al. demonstrate that Ikaros, a differentiation factor of leukocyte lineage, also influences the maturation of the fetal pituitary corticotroph and, hence, the secretion of adrenocorticotropic hormone before and after birth. These results indicate that Ikaros is an ontogenetic and phylogenetic integrator of the stress and immune systems and that abnormalities in its function may produce endocrine and/or immune pathologies.

Authors

George P. Chrousos, Tomoshige Kino

×
Research Articles
Deletion of IKK2 in hepatocytes does not sensitize these cells to TNF-induced apoptosis but protects from ischemia/reperfusion injury
Tom Luedde, … , Manolis Pasparakis, Christian Trautwein
Tom Luedde, … , Manolis Pasparakis, Christian Trautwein
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):849-859. https://doi.org/10.1172/JCI23493.
View: Text | PDF

Deletion of IKK2 in hepatocytes does not sensitize these cells to TNF-induced apoptosis but protects from ischemia/reperfusion injury

  • Text
  • PDF
Abstract

The inhibitor of NF-κB (I-κB) kinase (IKK) complex consists of 3 subunits, IKK1, IKK2, and NF-κB essential modulator (NEMO), and is involved in the activation of NF-κB by various stimuli. IKK2 or NEMO constitutive knockout mice die during embryogenesis as a result of massive hepatic apoptosis. Therefore, we examined the role of IKK2 in TNF-induced apoptosis and ischemia/reperfusion (I/R) injury in the liver by using conditional knockout mice. Hepatocyte-specific ablation of IKK2 did not lead to impaired activation of NF-κB or increased apoptosis after TNF-α stimulation whereas conditional NEMO knockout resulted in complete block of NF-κB activation and massive hepatocyte apoptosis. In a model of partial hepatic I/R injury, mice lacking IKK2 in hepatocytes displayed significantly reduced liver necrosis and inflammation than wild-type mice. AS602868, a novel chemical inhibitor of IKK2, protected mice from liver injury due to I/R without sensitizing them toward TNF-induced apoptosis and could therefore emerge as a new pharmacological therapy for liver resection, hemorrhagic shock, or transplantation surgery.

Authors

Tom Luedde, Ulrike Assmus, Torsten Wüstefeld, Andreas Meyer zu Vilsendorf, Tania Roskams, Mark Schmidt-Supprian, Klaus Rajewsky, David A. Brenner, Michael P. Manns, Manolis Pasparakis, Christian Trautwein

×

The IL-6–gp130–STAT3 pathway in hepatocytes triggers liver protection in T cell–mediated liver injury
Christian Klein, … , Mattias Ernst, Christian Trautwein
Christian Klein, … , Mattias Ernst, Christian Trautwein
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):860-869. https://doi.org/10.1172/JCI23640.
View: Text | PDF

The IL-6–gp130–STAT3 pathway in hepatocytes triggers liver protection in T cell–mediated liver injury

  • Text
  • PDF
Abstract

Increasing evidence demonstrates that IL-6 has a protective role during liver injury. IL-6 activates intracellular pathways via the gp130 receptor. In order to identify IL-6–gp130 pathways involved in mediating liver protection, we analyzed hepatocyte-specific gp130 knockout mice in a concanavalin A–induced (Con A–induced) model of immune-mediated hepatitis. We demonstrated that IL-6–gp130–dependent pathways in hepatocytes alone are sufficient for triggering protection in Con A–induced hepatitis. gp130-STAT3 signaling in hepatocytes mediates the IL-6–triggered protective effect. This was demonstrated by analysis of IL-6–induced protection in mice selectively deficient for gp130-dependent STAT1/3 or gp130-SHP2-RAS signaling in hepatocytes. To identify IL-6–gp130–STAT1/3 dependently expressed liver-protective factors, we performed gene array analysis of hepatic gene expression in hepatocyte-specific gp130–/– mice as well as in gp130-STAT1/3– and gp130-SHP2-RAS-MAPK–deficient mice. The mouse IL-8 ortholog KC (also known as Gro-α) and serum amyloid A2 (SAA2) was identified as differentially IL-6–gp130–STAT3–regulated genes. Hepatic expression of KC and SAA2 mediate the liver-protective potential of IL-6, since treatment with recombinant KC or serum SAA2 effectively reduced liver injury during Con A–induced hepatitis. In summary, this study defines IL-6–gp130–STAT3–dependent gene expression in hepatocytes that mediates IL-6–triggered protection in immune-mediated Con A–induced hepatitis. Additionally, we identified the IL-6–gp130–STAT3–dependent proteins KC and SAA2 as new candidates for therapeutic targets in liver diseases.

Authors

Christian Klein, Torsten Wüstefeld, Ulrike Assmus, Tania Roskams, Stefan Rose-John, Michael Müller, Michael P. Manns, Mattias Ernst, Christian Trautwein

×

Induction of dermal-epidermal separation in mice by passive transfer of antibodies specific to type VII collagen
Cassian Sitaru, … , Akira Ishiko, Detlef Zillikens
Cassian Sitaru, … , Akira Ishiko, Detlef Zillikens
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):870-878. https://doi.org/10.1172/JCI21386.
View: Text | PDF

Induction of dermal-epidermal separation in mice by passive transfer of antibodies specific to type VII collagen

  • Text
  • PDF
Abstract

Epidermolysis bullosa acquisita (EBA) is a subepidermal blistering disorder associated with tissue-bound and circulating autoantibodies specific to type VII collagen, a major constituent of the dermal-epidermal junction. Previous attempts to transfer the disease by injection of patient autoantibodies into mice have been unsuccessful. To study the pathogenic relevance of antibodies specific to type VII collagen in vivo, we generated and characterized rabbit antibodies specific to a murine form of this antigen and passively transferred them into adult nude, BALB/c, and C57BL/6 mice. Immune rabbit IgG bound to the lamina densa of murine skin and immunoblotted type VII collagen. Mice injected with purified IgG specific to type VII collagen, in contrast to control mice, developed subepidermal skin blisters, reproducing the human disease at the clinical, histological, electron microscopical, and immunopathological levels. Titers of rabbit IgG in the serum of mice correlated with the extent of the disease. F(ab′)2 fragments of rabbit IgG specific to type VII collagen were not pathogenic. When injected into C5-deficient mice, antibodies specific to type VII collagen failed to induce the disease, whereas C5-sufficient mice were susceptible to blister induction. This animal model for EBA should facilitate further dissection of the pathogenesis of this disease and development of new therapeutic strategies.

Authors

Cassian Sitaru, Sidonia Mihai, Christoph Otto, Mircea T. Chiriac, Ingrid Hausser, Barbara Dotterweich, Hitoshi Saito, Christian Rose, Akira Ishiko, Detlef Zillikens

×

Synergy between a plasminogen cascade and MMP-9 in autoimmune disease
Zhi Liu, … , Robert M. Senior, Zena Werb
Zhi Liu, … , Robert M. Senior, Zena Werb
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):879-887. https://doi.org/10.1172/JCI23977.
View: Text | PDF

Synergy between a plasminogen cascade and MMP-9 in autoimmune disease

  • Text
  • PDF
Abstract

Extracellular proteolysis by the plasminogen/plasmin (Plg/plasmin) system and MMPs is required for tissue injury in autoimmune and inflammatory diseases. We demonstrate that a Plg cascade synergizes with MMP-9/gelatinase B in vivo during dermal-epidermal separation in an experimental model of bullous pemphigoid (BP), an autoimmune disease. BP was induced in mice by antibodies to the hemidesmosomal antigen BP180. Mice deficient in MMP-9 were resistant to experimental BP, while mice deficient in Plg and both tissue Plg activator (tPA) and urokinase Plg activator (uPA) showed delayed and less intense blister formation induced by antibodies to BP180. Plg-deficient mice reconstituted locally with Plg or the active form of MMP-9 (actMMP-9), but not the proenzyme form of MMP-9 (proMMP-9), developed BP. In contrast, proMMP-9 or actMMP-9, but not Plg, reconstituted susceptibility of MMP-9–deficient mice to the skin disease. In addition, MMP-3–deficient mice injected with pathogenic IgG developed the same degree of BP and expressed levels of actMMP-9 in the skin similar to those of WT controls. Thus, the Plg/plasmin system is epistatic to MMP-9 activation and subsequent dermal-epidermal separation in BP.

Authors

Zhi Liu, Ning Li, Luis A. Diaz, Michael Shipley, Robert M. Senior, Zena Werb

×

Genetic and functional characterization of human pemphigus vulgaris monoclonal autoantibodies isolated by phage display
Aimee S. Payne, … , John R. Stanley, Don L. Siegel
Aimee S. Payne, … , John R. Stanley, Don L. Siegel
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):888-899. https://doi.org/10.1172/JCI24185.
View: Text | PDF

Genetic and functional characterization of human pemphigus vulgaris monoclonal autoantibodies isolated by phage display

  • Text
  • PDF
Abstract

Pemphigus is a life-threatening blistering disorder of the skin and mucous membranes caused by pathogenic autoantibodies to desmosomal adhesion proteins desmoglein 3 (Dsg3) and Dsg1. Mechanisms of antibody pathogenicity are difficult to characterize using polyclonal patient sera. Using antibody phage display, we have isolated repertoires of human anti-Dsg mAbs as single-chain variable-region fragments (scFvs) from a patient with active mucocutaneous pemphigus vulgaris. ScFv mAbs demonstrated binding to Dsg3 or Dsg1 alone, or both Dsg3 and Dsg1. Inhibition ELISA showed that the epitopes defined by these scFvs are blocked by autoantibodies from multiple pemphigus patients. Injection of scFvs into neonatal mice identified 2 pathogenic scFvs that caused blisters histologically similar to those observed in pemphigus patients. Similarly, these 2 scFvs, but not others, induced cell sheet dissociation of cultured human keratinocytes, indicating that both pathogenic and nonpathogenic antibodies were isolated. Genetic analysis of these mAbs showed restricted patterns of heavy and light chain gene usage, which were distinct for scFvs with different desmoglein-binding specificities. Detailed characterization of these pemphigus mAbs should lead to a better understanding of the immunopathogenesis of disease and to more specifically targeted therapeutic approaches.

Authors

Aimee S. Payne, Ken Ishii, Stephen Kacir, Chenyan Lin, Hong Li, Yasushi Hanakawa, Kazuyuki Tsunoda, Masayuki Amagai, John R. Stanley, Don L. Siegel

×

An inversion involving the mouse Shh locus results in brachydactyly through dysregulation of Shh expression
Michael Niedermaier, … , Paul B. Selby, Stefan Mundlos
Michael Niedermaier, … , Paul B. Selby, Stefan Mundlos
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):900-909. https://doi.org/10.1172/JCI23675.
View: Text | PDF

An inversion involving the mouse Shh locus results in brachydactyly through dysregulation of Shh expression

  • Text
  • PDF
Abstract

Short digits (Dsh) is a radiation-induced mouse mutant. Homozygous mice are characterized by multiple defects strongly resembling those resulting from Sonic hedgehog (Shh) inactivation. Heterozygous mice show a limb reduction phenotype with fusion and shortening of the proximal and middle phalanges in all digits, similar to human brachydactyly type A1, a condition caused by mutations in Indian hedgehog (IHH). We mapped Dsh to chromosome 5 in a region containing Shh and were able to demonstrate an inversion comprising 11.7 Mb. The distal breakpoint is 13.298 kb upstream of Shh, separating the coding sequence from several putative regulatory elements identified by interspecies comparison. The inversion results in almost complete downregulation of Shh expression during E9.5–E12.5, explaining the homozygous phenotype. At E13.5 and E14.5, however, Shh is upregulated in the phalangeal anlagen of Dsh/+ mice, at a time point and in a region where WT Shh is never expressed. The dysregulation of Shh expression causes the local upregulation of hedgehog target genes such as Gli1-3, patched, and Pthlh, as well as the downregulation of Ihh and Gdf5. This results in shortening of the digits through an arrest of chondrocyte differentiation and the disruption of joint development.

Authors

Michael Niedermaier, Georg C. Schwabe, Stephan Fees, Anne Helmrich, Norbert Brieske, Petra Seemann, Jochen Hecht, Volkhard Seitz, Sigmar Stricker, Gundula Leschik, Evelin Schrock, Paul B. Selby, Stefan Mundlos

×

Pkd1 regulates immortalized proliferation of renal tubular epithelial cells through p53 induction and JNK activation
Saori Nishio, … , Takeshi Tokuhisa, Toshio Mochizuki
Saori Nishio, … , Takeshi Tokuhisa, Toshio Mochizuki
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):910-918. https://doi.org/10.1172/JCI22850.
View: Text | PDF

Pkd1 regulates immortalized proliferation of renal tubular epithelial cells through p53 induction and JNK activation

  • Text
  • PDF
Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is the most common human monogenic genetic disorder and is characterized by progressive bilateral renal cysts and the development of renal insufficiency. The cystogenesis of ADPKD is believed to be a monoclonal proliferation of PKD-deficient (PKD–/–) renal tubular epithelial cells. To define the function of Pkd1, we generated chimeric mice by aggregation of Pkd1–/– ES cells and Pkd1+/+ morulae from ROSA26 mice. As occurs in humans with ADPKD, these mice developed cysts in the kidney, liver, and pancreas. Surprisingly, the cyst epithelia of the kidney were composed of both Pkd1–/– and Pkd1+/+ renal tubular epithelial cells in the early stages of cystogenesis. Pkd1–/– cyst epithelial cells changed in shape from cuboidal to flat and replaced Pkd1+/+ cyst epithelial cells lost by JNK-mediated apoptosis in intermediate stages. In late-stage cysts, Pkd1–/– cells continued immortalized proliferation with downregulation of p53. These results provide a novel understanding of the cystogenesis of ADPKD patients. Furthermore, immortalized proliferation without induction of p53 was frequently observed in 3T3-type culture of mouse embryonic fibroblasts from Pkd1–/– mice. Thus, Pkd1 plays a role in preventing immortalized proliferation of renal tubular epithelial cells through the induction of p53 and activation of JNK.

Authors

Saori Nishio, Masahiko Hatano, Michio Nagata, Shigeo Horie, Takao Koike, Takeshi Tokuhisa, Toshio Mochizuki

×

Dimerization of MLL fusion proteins and FLT3 activation synergize to induce multiple-lineage leukemogenesis
Ryoichi Ono, … , Yasuhide Hayashi, Tetsuya Nosaka
Ryoichi Ono, … , Yasuhide Hayashi, Tetsuya Nosaka
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):919-929. https://doi.org/10.1172/JCI22725.
View: Text | PDF

Dimerization of MLL fusion proteins and FLT3 activation synergize to induce multiple-lineage leukemogenesis

  • Text
  • PDF
Abstract

The mechanisms by which mixed-lineage leukemia (MLL) fusion products resulting from in utero translocations in 11q23 contribute to leukemogenesis and infant acute leukemia remain elusive. It is still controversial whether the MLL fusion protein is sufficient to induce acute leukemia without additional genetic alterations, although carcinogenesis in general is known to result from more than 1 genetic disorder accumulating during a lifetime. Here we demonstrate that the fusion partner–mediated homo-oligomerization of MLL-SEPT6 is essential to immortalize hematopoietic progenitors in vitro. MLL-SEPT6 induced myeloproliferative disease with long latency in mice, but not acute leukemia, implying that secondary genotoxic events are required to develop leukemia. We developed in vitro and in vivo model systems of leukemogenesis by MLL fusion proteins, where activated FMS-like receptor tyrosine kinase 3 (FLT3) together with MLL-SEPT6 not only transformed hematopoietic progenitors in vitro but also induced acute biphenotypic or myeloid leukemia with short latency in vivo. In these systems, MLL-ENL, another type of the fusion product that seems to act as a monomer, also induced the transformation in vitro and leukemogenesis in vivo in concert with activated FLT3. These findings show direct evidence for a multistep leukemogenesis mediated by MLL fusion proteins and may be applicable to development of direct MLL fusion–targeted therapy.

Authors

Ryoichi Ono, Hideaki Nakajima, Katsutoshi Ozaki, Hidetoshi Kumagai, Toshiyuki Kawashima, Tomohiko Taki, Toshio Kitamura, Yasuhide Hayashi, Tetsuya Nosaka

×

Age-dependent incidence, time course, and consequences of thymic renewal in adults
Frances T. Hakim, … , Crystal L. Mackall, Ronald E. Gress
Frances T. Hakim, … , Crystal L. Mackall, Ronald E. Gress
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):930-939. https://doi.org/10.1172/JCI22492.
View: Text | PDF

Age-dependent incidence, time course, and consequences of thymic renewal in adults

  • Text
  • PDF
Abstract

Homeostatic regulation of T cells involves an ongoing balance of new T cell generation, peripheral expansion, and turnover. The recovery of T cells when this balance is disrupted provides insight into the mechanisms that govern homeostasis. In a long-term, single cohort study, we assessed the role of thymic function after autologous transplant in adults, correlating serial computed tomography imaging of thymic size with concurrent measurements of peripheral CD4+ T cell populations. We established the age-dependent incidence, time course, and duration of thymic enlargement in adults and demonstrated that these changes were correlated with peripheral recovery of naive CD45RA+CD62L+ and signal-joint TCR rearrangement excision circle–bearing CD4+ populations with broad TCR diversity. Furthermore, we demonstrated that renewed thymopoiesis was critical for the restoration of peripheral CD4+ T cell populations. This recovery encompassed the recovery of normal CD4+ T cell numbers, a low ratio of effector to central memory cells, and a broad repertoire of TCR Vβ diversity among these memory cells. These data define the timeline and consequences of renewal of adult thymopoietic activity at levels able to quantitatively restore peripheral T cell populations. They further suggest that structural thymic regrowth serves as a basis for the regeneration of peripheral T cell populations.

Authors

Frances T. Hakim, Sarfraz A. Memon, Rosemarie Cepeda, Elizabeth C. Jones, Catherine K. Chow, Claude Kasten-Sportes, Jeanne Odom, Barbara A. Vance, Barbara L. Christensen, Crystal L. Mackall, Ronald E. Gress

×

The role of insulin receptor substrate 2 in hypothalamic and β cell function
Agharul I. Choudhury, … , Michael L.J. Ashford, Dominic J. Withers
Agharul I. Choudhury, … , Michael L.J. Ashford, Dominic J. Withers
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):940-950. https://doi.org/10.1172/JCI24445.
View: Text | PDF

The role of insulin receptor substrate 2 in hypothalamic and β cell function

  • Text
  • PDF
Abstract

Insulin receptor substrate 2 (Irs2) plays complex roles in energy homeostasis. We generated mice lacking Irs2 in β cells and a population of hypothalamic neurons (RIPCreIrs2KO), in all neurons (NesCreIrs2KO), and in proopiomelanocortin neurons (POMCCreIrs2KO) to determine the role of Irs2 in the CNS and β cell. RIPCreIrs2KO mice displayed impaired glucose tolerance and reduced β cell mass. Overt diabetes did not ensue, because β cells escaping Cre-mediated recombination progressively populated islets. RIPCreIrs2KO and NesCreIrs2KO mice displayed hyperphagia, obesity, and increased body length, which suggests altered melanocortin action. POMCCreIrs2KO mice did not display this phenotype. RIPCreIrs2KO and NesCreIrs2KO mice retained leptin sensitivity, which suggests that CNS Irs2 pathways are not required for leptin action. NesCreIrs2KO and POMCCreIrs2KO mice did not display reduced β cell mass, but NesCreIrs2KO mice displayed mild abnormalities of glucose homeostasis. RIPCre neurons did not express POMC or neuropeptide Y. Insulin and a melanocortin agonist depolarized RIPCre neurons, whereas leptin was ineffective. Insulin hyperpolarized and leptin depolarized POMC neurons. Our findings demonstrate a critical role for IRS2 in β cell and hypothalamic function and provide insights into the role of RIPCre neurons, a distinct hypothalamic neuronal population, in growth and energy homeostasis.

Authors

Agharul I. Choudhury, Helen Heffron, Mark A. Smith, Hind Al-Qassab, Allison W. Xu, Colin Selman, Marcus Simmgen, Melanie Clements, Marc Claret, Gavin MacColl, David C. Bedford, Kazunari Hisadome, Ivan Diakonov, Vazira Moosajee, Jimmy D. Bell, John R. Speakman, Rachel L. Batterham, Gregory S. Barsh, Michael L.J. Ashford, Dominic J. Withers

×

PI3K integrates the action of insulin and leptin on hypothalamic neurons
Allison Wanting Xu, … , Michael W. Schwartz, Gregory S. Barsh
Allison Wanting Xu, … , Michael W. Schwartz, Gregory S. Barsh
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):951-958. https://doi.org/10.1172/JCI24301.
View: Text | PDF

PI3K integrates the action of insulin and leptin on hypothalamic neurons

  • Text
  • PDF
Abstract

Central control of energy balance depends on the ability of proopiomelanocortin (POMC) or agouti-related protein (Agrp) hypothalamic neurons to sense and respond to changes in peripheral energy stores. Leptin and insulin have been implicated as circulating indicators of adiposity, but it is not clear how changes in their levels are perceived or integrated by individual neuronal subtypes. We developed mice in which a fluorescent reporter for PI3K activity is targeted to either Agrp or POMC neurons and used 2-photon microscopy to measure dynamic regulation of PI3K by insulin and leptin in brain slices. We show that leptin and insulin act in parallel to stimulate PI3K in POMC neurons but in opposite ways on Agrp neurons. These results suggest a new view of hypothalamic circuitry, in which the effects of leptin and insulin are integrated by anorexigenic but not by orexigenic neurons.

Authors

Allison Wanting Xu, Christopher B. Kaelin, Kiyoshi Takeda, Shizuo Akira, Michael W. Schwartz, Gregory S. Barsh

×

Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts
Liyan Zhuang, … , Keith R. Solomon, Michael R. Freeman
Liyan Zhuang, … , Keith R. Solomon, Michael R. Freeman
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):959-968. https://doi.org/10.1172/JCI19935.
View: Text | PDF

Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts

  • Text
  • PDF
Abstract

Lipid rafts are cholesterol- and sphingolipid-enriched microdomains in cell membranes that regulate phosphorylation cascades originating from membrane-bound proteins. In this study, we tested whether alteration of the cholesterol content of lipid rafts in prostate cancer (PCa) cell membranes affects cell survival mechanisms in vitro and in vivo. Simvastatin, a cholesterol synthesis inhibitor, lowered raft cholesterol content, inhibited Akt1 serine-threonine kinase (protein kinase Bα)/protein kinase B (Akt/PKB) pathway signaling, and induced apoptosis in caveolin- and PTEN-negative LNCaP PCa cells. Replenishing cell membranes with cholesterol reversed these inhibitory and apoptotic effects. Cholesterol also potentiated Akt activation in normal prostate epithelial cells, which were resistant to the apoptotic effects of simvastatin. Elevation of circulating cholesterol in SCID mice increased the cholesterol content and the extent of protein tyrosine phosphorylation in lipid rafts isolated from LNCaP/sHB xenograft tumors. Cholesterol elevation also promoted tumor growth, increased phosphorylation of Akt, and reduced apoptosis in the xenografts. Our results implicate membrane cholesterol in Akt signaling in both normal and malignant cells and provide evidence that PCa cells can become dependent on a cholesterol-regulated Akt pathway for cell survival.

Authors

Liyan Zhuang, Jayoung Kim, Rosalyn M. Adam, Keith R. Solomon, Michael R. Freeman

×

Cholesterol binding, efflux, and a PDZ-interacting domain of scavenger receptor–BI mediate HDL-initiated signaling
Chatchawin Assanasen, … , Philip W. Shaul, David L. Silver
Chatchawin Assanasen, … , Philip W. Shaul, David L. Silver
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):969-977. https://doi.org/10.1172/JCI23858.
View: Text | PDF

Cholesterol binding, efflux, and a PDZ-interacting domain of scavenger receptor–BI mediate HDL-initiated signaling

  • Text
  • PDF
Abstract

The binding of HDL to scavenger receptor–BI (SR-BI) mediates cholesterol movement. HDL also induces multiple cellular signals, which in endothelium occur through SR-BI and converge to activate eNOS. To determine the molecular basis of a signaling event induced by HDL, we examined the proximal mechanisms in HDL activation of eNOS. In endothelial cells, HDL and methyl-β-cyclodextrin caused comparable eNOS activation, whereas cholesterol-loaded methyl-β-cyclodextrin had no effect. Phosphatidylcholine-loaded HDL caused greater stimulation than native HDL, and blocking antibody against SR-BI, which prevents cholesterol efflux, prevented eNOS activation. In a reconstitution model in COS-M6 cells, wild-type SR-BI mediated eNOS activation by both HDL and small unilamellar vesicles (SUVs), whereas the SR-BI mutant AVI, which is incapable of efflux to SUV, transmitted signal by only HDL. In addition, eNOS activation by methyl-β-cyclodextrin was SR-BI dependent. Studies of mutant and chimeric class B scavenger receptors revealed that the C-terminal cytoplasmic PDZ-interacting domain and the C-terminal transmembrane domains of SR-BI are both necessary for HDL signaling. Furthermore, we demonstrated direct binding of cholesterol to the C-terminal transmembrane domain using a photoactivated derivative of cholesterol. Thus, HDL signaling requires cholesterol binding and efflux and C-terminal domains of SR-BI, and SR-BI serves as a cholesterol sensor on the plasma membrane.

Authors

Chatchawin Assanasen, Chieko Mineo, Divya Seetharam, Ivan S. Yuhanna, Yves L. Marcel, Margery A. Connelly, David L. Williams, Margarita de la Llera-Moya, Philip W. Shaul, David L. Silver

×

Intravesical administration of small interfering RNA targeting PLK-1 successfully prevents the growth of bladder cancer
Masaki Nogawa, … , Yusaku Okada, Taira Maekawa
Masaki Nogawa, … , Yusaku Okada, Taira Maekawa
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):978-985. https://doi.org/10.1172/JCI23043.
View: Text | PDF

Intravesical administration of small interfering RNA targeting PLK-1 successfully prevents the growth of bladder cancer

  • Text
  • PDF
Abstract

The mainstay in the management of invasive bladder cancer continues to be radical cystectomy. With regard to improvement of quality of life, however, therapies that preserve the bladder are desirable. We investigated the use of intravesical PLK-1 small interfering RNA (siRNA) against bladder cancer. Patients with bladder cancers expressing high levels of PLK-1 have a poor prognosis compared with patients with low expression. Using siRNA/cationic liposomes, the expression of endogenous PLK-1 could be suppressed in bladder cancer cells in a time- and dose-dependent manner. As a consequence, PLK-1 functions were disrupted. Inhibition of bipolar spindle formation, accumulation of cyclin B1, reduced cell proliferation, and induction of apoptosis were observed. In order to determine the efficacy of the siRNA/liposomes in vivo, we established an orthotopic mouse model using a LUC-labeled bladder cancer cell line, UM-UC-3LUC. PLK-1 siRNA was successfully transfected into the cells, reduced PLK-1 expression, and prevented the growth of bladder cancer in this mouse model. This is the first demonstration, to our knowledge, of inhibition of cancer growth in the murine bladder by intravesical siRNA/cationic liposomes. We believe intravesical siRNA instillation against bladder cancer will be useful as a therapeutic tool.

Authors

Masaki Nogawa, Takeshi Yuasa, Shinya Kimura, Motoyoshi Tanaka, Junya Kuroda, Kiyoshi Sato, Asumi Yokota, Hidekazu Segawa, Yoshinobu Toda, Susumu Kageyama, Tatsuhiro Yoshiki, Yusaku Okada, Taira Maekawa

×

Differential impact of prostaglandin H synthase 1 knockdown on platelets and parturition
Ying Yu, … , Garret A. FitzGerald, Colin D. Funk
Ying Yu, … , Garret A. FitzGerald, Colin D. Funk
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):986-995. https://doi.org/10.1172/JCI23683.
View: Text | PDF

Differential impact of prostaglandin H synthase 1 knockdown on platelets and parturition

  • Text
  • PDF
Abstract

Platelet activation is a hallmark of severe preeclampsia, and platelet PGH synthase 1–derived (PGHS1-derived) thromboxane A2 (TxA2) has been implicated in its pathogenesis. However, genetic disruption of PGHS1 delays parturition. We created hypomorphic PGHS1 (PGHS1Neo/Neo) mice, in which the substantial but tissue-dependent variability in the inhibition of PGHS1-derived eicosanoids achieved by low-dose aspirin treatment is mimicked, to assess the relative impact of this strategy on hemostatic and reproductive function. Depression of platelet TxA2 by 98% in PGHS1Neo/Neo mice decreased platelet aggregation and prevented thrombosis. Similarly, depression of macrophage PGE2 by 75% was associated with selectively impaired inflammatory responses. PGF2α at 8% WT levels was sufficient to induce coordinated temporal oxytocin receptor (OTR) expression in uterus and normal ovarian luteolysis in PGHS1Neo/Neo mice at late gestation, while absence of PGHS1 expression in null mice delayed OTR induction and the programmed decrease of serum progesterone during parturition. Thus, extensive but tissue-dependent variability in PG suppression, as occurs with low-dose aspirin treatment, prevents thrombosis and impairs the inflammatory response but sustains parturition. PGHS1Neo/Neo mice provide a model of low-dose aspirin therapy that elucidates how prevention or delay of preeclampsia might be achieved without compromising reproductive function.

Authors

Ying Yu, Yan Cheng, Jinjin Fan, Xin-Sheng Chen, Andres Klein-Szanto, Garret A. FitzGerald, Colin D. Funk

×

Systemic lupus erythematosus serum IgG increases CREM binding to the IL-2 promoter and suppresses IL-2 production through CaMKIV
Yuang-Taung Juang, … , Vasileios C. Kyttaris, George C. Tsokos
Yuang-Taung Juang, … , Vasileios C. Kyttaris, George C. Tsokos
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):996-1005. https://doi.org/10.1172/JCI22854.
View: Text | PDF

Systemic lupus erythematosus serum IgG increases CREM binding to the IL-2 promoter and suppresses IL-2 production through CaMKIV

  • Text
  • PDF
Abstract

Systemic lupus erythematosus (SLE) T cells express high levels of cAMP response element modulator (CREM) that binds to the IL-2 promoter and represses the transcription of the IL-2 gene. This study was designed to identify pathways that lead to increased binding of CREM to the IL-2 promoter in SLE T cells. Ca2+/calmodulin–dependent kinase IV (CaMKIV) was found to be increased in the nucleus of SLE T cells and to be involved in the overexpression of CREM and its binding to the IL-2 promoter. Treatment of normal T cells with SLE serum resulted in increased expression of CREM protein, increased binding of CREM to the IL-2 promoter, and decreased IL-2 promoter activity and IL-2 production. This process was abolished when a dominant inactive form of CaMKIV was expressed in normal T cells. The effect of SLE serum resided within the IgG fraction and was specifically attributed to anti–TCR/CD3 autoantibodies. This study identifies CaMKIV as being responsible for the increased expression of CREM and the decreased production of IL-2 in SLE T cells and demonstrates that anti–TCR/CD3 antibodies present in SLE sera can account for the increased expression of CREM and the suppression of IL-2 production.

Authors

Yuang-Taung Juang, Ying Wang, Elena E. Solomou, Yansong Li, Christian Mawrin, Klaus Tenbrock, Vasileios C. Kyttaris, George C. Tsokos

×

The MODY1 gene HNF-4α regulates selected genes involved in insulin secretion
Rana K. Gupta, … , Stephen A. Duncan, Klaus H. Kaestner
Rana K. Gupta, … , Stephen A. Duncan, Klaus H. Kaestner
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):1006-1015. https://doi.org/10.1172/JCI22365.
View: Text | PDF

The MODY1 gene HNF-4α regulates selected genes involved in insulin secretion

  • Text
  • PDF
Abstract

Mutations in the gene encoding hepatocyte nuclear factor-4α (HNF-4α) result in maturity-onset diabetes of the young (MODY). To determine the contribution of HNF-4α to the maintenance of glucose homeostasis by the β cell in vivo, we derived a conditional knockout of HNF-4α using the Cre-loxP system. Surprisingly, deletion of HNF-4α in β cells resulted in hyperinsulinemia in fasted and fed mice but paradoxically also in impaired glucose tolerance. Islet perifusion and calcium-imaging studies showed abnormal responses of the mutant β cells to stimulation by glucose and sulfonylureas. These phenotypes can be explained in part by a 60% reduction in expression of the potassium channel subunit Kir6.2. We demonstrate using cotransfection assays that the Kir6.2 gene is a transcriptional target of HNF-4α. Our data provide genetic evidence that HNF-4α is required in the pancreatic β cell for regulation of the pathway of insulin secretion dependent on the ATP-dependent potassium channel.

Authors

Rana K. Gupta, Marko Z. Vatamaniuk, Catherine S. Lee, Reed C. Flaschen, James T. Fulmer, Franz M. Matschinsky, Stephen A. Duncan, Klaus H. Kaestner

×

Lack of MEF2A mutations in coronary artery disease
Li Weng, … , Ruth McPherson, Len A. Pennacchio
Li Weng, … , Ruth McPherson, Len A. Pennacchio
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):1016-1020. https://doi.org/10.1172/JCI24186.
View: Text | PDF

Lack of MEF2A mutations in coronary artery disease

  • Text
  • PDF
Abstract

Mutations in MEF2A have been implicated in an autosomal dominant form of coronary artery disease (adCAD1). In this study we sought to determine whether severe mutations in MEF2A might also explain sporadic cases of coronary artery disease (CAD). To do this, we resequenced the coding sequence and splice sites of MEF2A in approximately 300 patients with premature CAD and failed to find causative mutations in the CAD cohort. However, we did identify the 21-bp MEF2A coding sequence deletion originally implicated in adCAD1 in 1 of 300 elderly control subjects without CAD. Further screening of approximately 1,500 additional individuals without CAD revealed 2 more subjects with the MEF2A 21-bp deletion. Genotyping of 19 family members of the 3 probands with the 21-bp deletion in MEF2A revealed that the mutation did not cosegregate with early CAD. These studies support that MEF2A mutations are not a common cause of CAD in white people and argue strongly against a role for the MEF2A 21-bp deletion in autosomal dominant CAD.

Authors

Li Weng, Nihan Kavaslar, Anna Ustaszewska, Heather Doelle, Wendy Schackwitz, Sybil Hébert, Jonathan C. Cohen, Ruth McPherson, Len A. Pennacchio

×

Ikaros integrates endocrine and immune system development
Shereen Ezzat, … , Philippe Poussier, Sylvia L. Asa
Shereen Ezzat, … , Philippe Poussier, Sylvia L. Asa
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):1021-1029. https://doi.org/10.1172/JCI22486.
View: Text | PDF

Ikaros integrates endocrine and immune system development

  • Text
  • PDF
Abstract

Ikaros transcription factors are essential regulators of lymphopoiesis and the development of the immune system. We now show that Ikaros is expressed in hormone-producing pituitary corticomelanotroph cells, where it binds the proopiomelanocortin promoter and regulates endogenous gene expression. Loss of Ikaros in vivo results in contraction of the pituitary corticomelanotroph population, reduced circulating adrenocorticotrophic hormone levels, and adrenal glucocorticoid insufficiency. While hemopoietic reconstitution failed to correct this hormonal deficit, the phenotype of reduced body weight and diminished survival was rescued by systemic glucocorticoid-hormone administration. Given the established immunomodulatory properties of glucocorticoid hormones, these findings reveal a novel role for Ikaros in orchestrating immune-endocrine development and function.

Authors

Shereen Ezzat, Rene Mader, ShunJiang Yu, Terry Ning, Philippe Poussier, Sylvia L. Asa

×

Prevention of obesity in mice by antisense oligonucleotide inhibitors of stearoyl-CoA desaturase–1
Guoqiang Jiang, … , Thomas Doebber, Bei B. Zhang
Guoqiang Jiang, … , Thomas Doebber, Bei B. Zhang
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):1030-1038. https://doi.org/10.1172/JCI23962.
View: Text | PDF | Erratum

Prevention of obesity in mice by antisense oligonucleotide inhibitors of stearoyl-CoA desaturase–1

  • Text
  • PDF
Abstract

Effective therapies for the treatment of obesity, a key element of metabolic syndrome, are urgently needed but currently lacking. Stearoyl-CoA desaturase–1 (SCD1) is the rate-limiting enzyme catalyzing the conversion of saturated long-chain fatty acids into monounsaturated fatty acids, which are major components of triglycerides. In the current study, we tested the efficacy of pharmacological inhibition of SCD1 in controlling lipogenesis and body weight in mice. SCD1-specific antisense oligonucleotide inhibitors (ASOs) reduced SCD1 expression, reduced fatty acid synthesis and secretion, and increased fatty acid oxidization in primary mouse hepatocytes. Treatment of mice with SCD1 ASOs resulted in prevention of diet-induced obesity with concomitant reductions in SCD1 expression and the ratio of oleate to stearoyl-CoA in tissues and plasma. These changes correlated with reduced body adiposity, hepatomegaly and steatosis, and postprandial plasma insulin and glucose levels. Furthermore, SCD1 ASOs reduced de novo fatty acid synthesis, decreased expression of lipogenic genes, and increased expression of genes promoting energy expenditure in liver and adipose tissues. Thus, SCD1 inhibition represents a new target for the treatment of obesity and related metabolic disorders.

Authors

Guoqiang Jiang, Zhihua Li, Franklin Liu, Kenneth Ellsworth, Qing Dallas-Yang, Margaret Wu, John Ronan, Christine Esau, Cain Murphy, Deborah Szalkowski, Raynald Bergeron, Thomas Doebber, Bei B. Zhang

×

Bcl-2–related protein A1 is an endogenous and cytokine-stimulated mediator of cytoprotection in hyperoxic acute lung injury
Chuan Hua He, … , Robert Homer, Jack A. Elias
Chuan Hua He, … , Robert Homer, Jack A. Elias
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):1039-1048. https://doi.org/10.1172/JCI23004.
View: Text | PDF

Bcl-2–related protein A1 is an endogenous and cytokine-stimulated mediator of cytoprotection in hyperoxic acute lung injury

  • Text
  • PDF
Abstract

Hyperoxic acute lung injury (HALI) is characterized by a cell death response with features of apoptosis and necrosis that is inhibited by IL-11 and other interventions. We hypothesized that Bfl-1/A1, an antiapoptotic Bcl-2 protein, is a critical regulator of HALI and a mediator of IL-11–induced cytoprotection. To test this, we characterized the expression of A1 and the oxygen susceptibility of WT and IL-11 Tg(+) mice with normal and null A1 loci. In WT mice, 100% O2 caused TUNEL+ cell death, induction and activation of intrinsic and mitochondrial-death pathways, and alveolar protein leak. Bcl-2 and Bcl-xl were also induced as an apparent protective response. A1 was induced in hyperoxia, and in A1-null mice, the toxic effects of hyperoxia were exaggerated, Bcl-2 and Bcl-xl were not induced, and premature death was seen. In contrast, IL-11 stimulated A1, diminished the toxic effects of hyperoxia, stimulated Bcl-2 and Bcl-xl, and enhanced murine survival in 100% O2. In A1-null mice, IL-11–induced protection, survival advantage, and Bcl-2 and Bcl-xl induction were significantly decreased. VEGF also conferred protection via an A1-dependent mechanism. In vitro hyperoxia also stimulated A1, and A1 overexpression inhibited oxidant-induced epithelial cell apoptosis and necrosis. A1 is an important regulator of oxidant-induced lung injury, apoptosis, necrosis, and Bcl-2 and Bcl-xl gene expression and a critical mediator of IL-11– and VEGF-induced cytoprotection.

Authors

Chuan Hua He, Aaron B. Waxman, Chun Geun Lee, Holger Link, Morgan E. Rabach, Bing Ma, Qingsheng Chen, Zhou Zhu, Mei Zhong, Keiko Nakayama, Keiichi I. Nakayama, Robert Homer, Jack A. Elias

×

Impaired humoral immunity in X-linked lymphoproliferative disease is associated with defective IL-10 production by CD4+ T cells
Cindy S. Ma, … , Philip D. Hodgkin, Stuart G. Tangye
Cindy S. Ma, … , Philip D. Hodgkin, Stuart G. Tangye
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):1049-1059. https://doi.org/10.1172/JCI23139.
View: Text | PDF

Impaired humoral immunity in X-linked lymphoproliferative disease is associated with defective IL-10 production by CD4+ T cells

  • Text
  • PDF
Abstract

X-linked lymphoproliferative disease (XLP) is an often-fatal immunodeficiency characterized by hypogammaglobulinemia, fulminant infectious mononucleosis, and/or lymphoma. The genetic lesion in XLP, SH2D1A, encodes the adaptor protein SAP (signaling lymphocytic activation molecule–associated [SLAM-associated] protein); however, the mechanism(s) by which mutations in SH2D1A causes hypogammaglobulinemia is unknown. Our analysis of 14 XLP patients revealed normal B cell development but a marked reduction in the number of memory B cells. The few memory cells detected were IgM+, revealing deficient isotype switching in vivo. However, XLP B cells underwent proliferation and differentiation in vitro as efficiently as control B cells, which indicates that the block in differentiation in vivo is B cell extrinsic. This possibility is supported by the finding that XLP CD4+ T cells did not efficiently differentiate into IL-10+ effector cells or provide optimal B cell help in vitro. Importantly, the B cell help provided by SAP-deficient CD4+ T cells was improved by provision of exogenous IL-10 or ectopic expression of SAP, which resulted in increased IL-10 production by T cells. XLP CD4+ T cells also failed to efficiently upregulate expression of inducible costimulator (ICOS), a potent inducer of IL-10 production by CD4+ T cells. Thus, insufficient IL-10 production may contribute to hypogammaglobulinemia in XLP. This finding suggests new strategies for treating this immunodeficiency.

Authors

Cindy S. Ma, Nathan J. Hare, Kim E. Nichols, Loic Dupré, Grazia Andolfi, Maria-Grazia Roncarolo, Stephen Adelstein, Philip D. Hodgkin, Stuart G. Tangye

×

Role of osteopontin in amplification and perpetuation of rheumatoid synovitis
Guangwu Xu, … , Jian Hong, Jingwu Z. Zhang
Guangwu Xu, … , Jian Hong, Jingwu Z. Zhang
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):1060-1067. https://doi.org/10.1172/JCI23273.
View: Text | PDF

Role of osteopontin in amplification and perpetuation of rheumatoid synovitis

  • Text
  • PDF
Abstract

Osteopontin (OPN) is an extracellular matrix protein of pleiotropic properties and has been recently recognized as a potential inflammatory cytokine. In this study, we demonstrate, for the first time to our knowledge, that overexpression of OPN in synovial T cells is associated with local inflammatory milieu and that OPN acts as an important mediator in amplification and perpetuation of rheumatoid synovitis. The study revealed that mRNA expression of OPN was highly elevated in CD4+ synovial T cells derived from patients with RA, which correlated with increased OPN concentrations in synovial fluid (SF). The pattern of OPN overexpression was confined to rheumatoid synovium and correlated with coexpression of selected OPN receptors in synovial T cells, including integrins αv and β1 and CD44. RA-derived SF stimulated the expression of OPN in T cells, which was attributable to IL-10 present in SF and abrogated by anti–IL-10 antibody. Among the more than 300 autoimmune and inflammatory response genes examined, OPN selectively induced the expression of proinflammatory cytokines and chemokines known to promote migration and recruitment of inflammatory cells. Furthermore, it was evident that OPN activated transcription factor NF-κB in mononuclear cells. The study has important implications for understanding the role of OPN in rheumatoid synovitis and other inflammatory conditions.

Authors

Guangwu Xu, Hong Nie, Ningli Li, Wenxin Zheng, Dongqing Zhang, Guozhang Feng, Liqing Ni, Rong Xu, Jian Hong, Jingwu Z. Zhang

×

The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells
Rosa Marina Melillo, … , Alfredo Fusco, Massimo Santoro
Rosa Marina Melillo, … , Alfredo Fusco, Massimo Santoro
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):1068-1081. https://doi.org/10.1172/JCI22758.
View: Text | PDF | Retraction

The RET/PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic phenotype of thyroid cancer cells

  • Text
  • PDF
Abstract

In papillary thyroid carcinomas (PTCs), rearrangements of the RET receptor (RET/PTC) and activating mutations in the BRAF or RAS oncogenes are mutually exclusive. Here we show that the 3 proteins function along a linear oncogenic signaling cascade in which RET/PTC induces RAS-dependent BRAF activation and RAS- and BRAF-dependent ERK activation. Adoptive activation of the RET/PTC-RAS-BRAF axis induced cell proliferation and Matrigel invasion of thyroid follicular cells. Gene expression profiling revealed that the 3 oncogenes activate a common transcriptional program in thyroid cells that includes upregulation of the CXCL1 and CXCL10 chemokines, which in turn stimulate proliferation and invasion. Thus, motile and mitogenic properties are intrinsic to transformed thyroid cells and are governed by an epistatic oncogenic signaling cascade.

Authors

Rosa Marina Melillo, Maria Domenica Castellone, Valentina Guarino, Valentina De Falco, Anna Maria Cirafici, Giuliana Salvatore, Fiorina Caiazzo, Fulvio Basolo, Riccardo Giannini, Mogens Kruhoffer, Torben Orntoft, Alfredo Fusco, Massimo Santoro

×

Antiinflammatory profiles during primary SIV infection in African green monkeys are associated with protection against AIDS
Christopher Kornfeld, … , Ousmane M. Diop, Michaela C. Müller-Trutwin
Christopher Kornfeld, … , Ousmane M. Diop, Michaela C. Müller-Trutwin
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):1082-1091. https://doi.org/10.1172/JCI23006.
View: Text | PDF | Corrigendum

Antiinflammatory profiles during primary SIV infection in African green monkeys are associated with protection against AIDS

  • Text
  • PDF
Abstract

T cell activation levels in HIV infection are predictive of AIDS progression. We searched for the immunological correlates of protection against disease progression by studying the early stages of nonpathogenic SIV infection in African green monkeys (SIVagm). The African green monkeys (AGMs) displayed high peak viremias and a transient decline in levels of blood CD4+ and CD8+ T cells between days 5 and 17 after infection. A concomitant increase in levels of CD4+DR+, CD8+DR+, and CD8+CD28– cells was detected. After the third week, T cell activation returned to baseline levels, which suggested a protective downregulation of T cell activation. A very early (24 hours after infection) and strong induction of TGF-β1 and FoxP3 expression was detected and correlated with increases in levels of CD4+CD25+ and CD8+CD25+ T cells. This was followed by a significant increase in levels of IL-10, whereas IFN-γ gene upregulation was more transient, and levels of TNF-α and MIP-1α/β transcripts did not increase in either blood or tissues. The profiles were significantly different during primary SIV infection in macaques (SIVmac); that is, there was a delayed increase in IL-10 levels accompanied by moderate and persistent increases in TGF-β levels. Together, our data show that SIVagm infection is associated with an immediate antiinflammatory environment and suggest that TGF-β may participate in the generation of Tregs, which may prevent an aberrant chronic T cell hyperactivation.

Authors

Christopher Kornfeld, Mickaël J.-Y. Ploquin, Ivona Pandrea, Abdourahmane Faye, Richard Onanga, Cristian Apetrei, Virginie Poaty-Mavoungou, Pierre Rouquet, Jérôme Estaquier, Lorenzo Mortara, Jean-François Desoutter, Cécile Butor, Roger Le Grand, Pierre Roques, François Simon, Françoise Barré-Sinoussi, Ousmane M. Diop, Michaela C. Müller-Trutwin

×

Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system
Steven D. Crowley, … , Thu H. Le, Thomas M. Coffman
Steven D. Crowley, … , Thu H. Le, Thomas M. Coffman
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):1092-1099. https://doi.org/10.1172/JCI23378.
View: Text | PDF

Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system

  • Text
  • PDF
Abstract

Angiotensin II, acting through type 1 angiotensin (AT1) receptors, has potent effects that alter renal excretory mechanisms. Control of sodium excretion by the kidney has been suggested to be the critical mechanism for blood pressure regulation by the renin-angiotensin system (RAS). However, since AT1 receptors are ubiquitously expressed, precisely dissecting their physiological actions in individual tissue compartments including the kidney with conventional pharmacological or gene targeting experiments has been difficult. Here, we used a cross-transplantation strategy and AT1A receptor–deficient mice to demonstrate distinct and virtually equivalent contributions of AT1 receptor actions in the kidney and in extrarenal tissues to determining the level of blood pressure. We demonstrate that regulation of blood pressure by extrarenal AT1A receptors cannot be explained by altered aldosterone generation, which suggests that AT1 receptor actions in systemic tissues such as the vascular and/or the central nervous systems make nonredundant contributions to blood pressure regulation. We also show that interruption of the AT1 receptor–mediated short-loop feedback in the kidney is not sufficient to explain the marked stimulation of renin production induced by global AT1 receptor deficiency or by receptor blockade. Instead, the renin response seems to be primarily determined by renal baroreceptor mechanisms triggered by reduced blood pressure. Thus, the regulation of blood pressure by the RAS is mediated by AT1 receptors both within and outside the kidney.

Authors

Steven D. Crowley, Susan B. Gurley, Michael I. Oliverio, A. Kathy Pazmino, Robert Griffiths, Patrick J. Flannery, Robert F. Spurney, Hyung-Suk Kim, Oliver Smithies, Thu H. Le, Thomas M. Coffman

×
Corrigenda
Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1)
Gaël Ménasché, … , Alain Fischer, Geneviève de Saint Basile
Gaël Ménasché, … , Alain Fischer, Geneviève de Saint Basile
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):1100-1100. https://doi.org/10.1172/JCI18264C1.
View: Text | PDF | Amended Article

Griscelli syndrome restricted to hypopigmentation results from a melanophilin defect (GS3) or a MYO5A F-exon deletion (GS1)

  • Text
  • PDF
Abstract

Authors

Gaël Ménasché, Chen Hsuan Ho, Ozden Sanal, Jérôme Feldmann, Ilhan Tezcan, Fügen Ersoy, Anne Houdusse, Alain Fischer, Geneviève de Saint Basile

×

Toll-like receptor 9–induced type I IFN protects mice from experimental colitis
Kyoko Katakura, … , Lars Eckmann, Eyal Raz
Kyoko Katakura, … , Lars Eckmann, Eyal Raz
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):1100-1100. https://doi.org/10.1172/JCI22996C1.
View: Text | PDF | Amended Article

Toll-like receptor 9–induced type I IFN protects mice from experimental colitis

  • Text
  • PDF
Abstract

Authors

Kyoko Katakura, Jongdae Lee, Daniel Rachmilewitz, Gloria Li, Lars Eckmann, Eyal Raz

×

Liver fibrosis
Ramón Bataller, David A. Brenner
Ramón Bataller, David A. Brenner
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):1100-1100. https://doi.org/10.1172/JCI24282C1.
View: Text | PDF | Amended Article

Liver fibrosis

  • Text
  • PDF
Abstract

Authors

Ramón Bataller , David A. Brenner

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts