Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Differential impact of prostaglandin H synthase 1 knockdown on platelets and parturition
Ying Yu, … , Garret A. FitzGerald, Colin D. Funk
Ying Yu, … , Garret A. FitzGerald, Colin D. Funk
Published April 1, 2005
Citation Information: J Clin Invest. 2005;115(4):986-995. https://doi.org/10.1172/JCI23683.
View: Text | PDF
Article Cardiology

Differential impact of prostaglandin H synthase 1 knockdown on platelets and parturition

  • Text
  • PDF
Abstract

Platelet activation is a hallmark of severe preeclampsia, and platelet PGH synthase 1–derived (PGHS1-derived) thromboxane A2 (TxA2) has been implicated in its pathogenesis. However, genetic disruption of PGHS1 delays parturition. We created hypomorphic PGHS1 (PGHS1Neo/Neo) mice, in which the substantial but tissue-dependent variability in the inhibition of PGHS1-derived eicosanoids achieved by low-dose aspirin treatment is mimicked, to assess the relative impact of this strategy on hemostatic and reproductive function. Depression of platelet TxA2 by 98% in PGHS1Neo/Neo mice decreased platelet aggregation and prevented thrombosis. Similarly, depression of macrophage PGE2 by 75% was associated with selectively impaired inflammatory responses. PGF2α at 8% WT levels was sufficient to induce coordinated temporal oxytocin receptor (OTR) expression in uterus and normal ovarian luteolysis in PGHS1Neo/Neo mice at late gestation, while absence of PGHS1 expression in null mice delayed OTR induction and the programmed decrease of serum progesterone during parturition. Thus, extensive but tissue-dependent variability in PG suppression, as occurs with low-dose aspirin treatment, prevents thrombosis and impairs the inflammatory response but sustains parturition. PGHS1Neo/Neo mice provide a model of low-dose aspirin therapy that elucidates how prevention or delay of preeclampsia might be achieved without compromising reproductive function.

Authors

Ying Yu, Yan Cheng, Jinjin Fan, Xin-Sheng Chen, Andres Klein-Szanto, Garret A. FitzGerald, Colin D. Funk

×

Figure 1

Options: View larger image (or click on image) Download as PowerPoint
Generation of PGHS1Neo mice. (A) Targeting strategy. Numbers indicate kn...
Generation of PGHS1Neo mice. (A) Targeting strategy. Numbers indicate known coding exons. Dashed lines indicate regions for homologous recombination; dotted lines represent fragments generated by PCR genotyping. TK, thymidine kinase. Restriction sites: A, ApaLI; B, BamHI; H, HindIII; X, XbaI. (B) Identification of PGHS1Neo allele by Southern blot analysis. The 4.1- and 6.0-kb bands represent WT and targeted alleles, respectively, when ApaLI was used for DNA digestion, while the 5.3- and 3.7-kb bands represent the corresponding alleles with HindIII digestion. (C) PCR genotyping of tail biopsies from WT (317 bp) and PGHS1Neo (752 bp) mice.

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts