Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

In-Press Preview

  • 2,074 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 76
  • 77
  • 78
  • …
  • 207
  • 208
  • Next →
Intestinal epithelial HDAC3 and MHC class II coordinate microbiota-specific immunity
Emily M. Eshleman, … , Sing Sing Way, Theresa Alenghat
Emily M. Eshleman, … , Sing Sing Way, Theresa Alenghat
Published January 5, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI162190.
View: Text | PDF

Intestinal epithelial HDAC3 and MHC class II coordinate microbiota-specific immunity

  • Text
  • PDF
Abstract

Aberrant immune responses to resident microbes promote inflammatory bowel disease and other chronic inflammatory conditions. However, how microbiota-specific immunity is controlled in mucosal tissues remains poorly understood. Here, we find that mice lacking epithelial expression of microbiota-sensitive histone deacetylase 3 (HDAC3) exhibit increased accumulation of commensal-specific CD4+ T cells in the intestine, provoking the hypothesis that epithelial HDAC3 may instruct local microbiota-specific immunity. Consistent with this, microbiota-specific CD4+ T cells and epithelial HDAC3 expression were concurrently induced following early-life microbiota colonization. Further, epithelial-intrinsic ablation of HDAC3 decreased commensal-specific Tregs, increased commensal-specific Th17 cells, and promoted T cell-driven colitis. Mechanistically, HDAC3 was essential for NFκB-dependent regulation of epithelial MHC class II (MHCII). Epithelial-intrinsic MHCII dampened local accumulation of commensal-specific Th17 cells in adult mice, and protected against microbiota-triggered inflammation. Remarkably, HDAC3 enabled the microbiota to induce MHCII on epithelial cells and limit the number of commensal-specific T cells in the intestine. Collectively, these data reveal a central role for an epithelial histone deacetylase in directing the dynamic balance of tissue-intrinsic CD4+ T cell subsets that recognize commensal microbes and control inflammation.

Authors

Emily M. Eshleman, Tzu-Yu Shao, Vivienne Woo, Taylor Rice, Laura Engleman, Bailey J. Didriksen, Jordan Whitt, David B. Haslam, Sing Sing Way, Theresa Alenghat

×

A systems biology approach identifies the role of dysregulated PRDM6 in the development of hypertension
Kushan L. Gunawardhana, … , James P. Noonan, Arya Mani
Kushan L. Gunawardhana, … , James P. Noonan, Arya Mani
Published January 5, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI160036.
View: Text | PDF

A systems biology approach identifies the role of dysregulated PRDM6 in the development of hypertension

  • Text
  • PDF
Abstract

Genetic variants in the third intron of the PRDM6 gene have been associated with blood pressure traits in multiple genome-wide association studies (GWAS). By combining fine mapping, massive-ly parallel reporter assays, and gene editing we identified the causal variants for hypertension as super-enhancers that drive the expression of PRDM6 and are partly regulated by STAT1. The het-erozygous SMC-specific Prdm6 knockout mice (Prdm6fl/+ Sm22Cre) exhibited a markedly high-er number of renin-producing cells in the kidneys at embryonic day 18.5 compared to wild-type littermates and developed salt-induced systemic hypertension that was completely responsive to the renin inhibitor aliskiren. Strikingly, RNA-seq analysis of the mice aorta identified a network of PRDM6-regulated genes that are located in GWAS-associated loci for blood pressure, most nota-bly Sox6, which modulates renin-expression in the kidney. Accordingly, the smooth muscle cell-specific disruption of Sox6 in Prdm6fl/+ Sm22Cre mice resulted in a dramatic reduction of renin. Fate mapping and histological studies also showed increased numbers of neural crest-derived cells accompanied by increased collagen deposition in the kidneys of Prdm6fl/+ Wnt1Cre-ZsGreen1Cre compared to wild-type mice. These findings establish the role of PRDM6 as a regulator of renin-producing cells and an attractive target for the development of antihypertensive drugs.

Authors

Kushan L. Gunawardhana, Lingjuan Hong, Trojan Rugira, Severin Uebbing, Joanna Kucharczak, Sameet Mehta, Dineth R. Karunamuni, Brenda Cabrera-Mendoza, Renato Polimanti, James P. Noonan, Arya Mani

×

Astroglial toxicity promotes synaptic degeneration in the thalamocortical circuit in frontotemporal dementia with GRN mutations
Elise Marsan, … , Arnold Kriegstein, Eric J. Huang
Elise Marsan, … , Arnold Kriegstein, Eric J. Huang
Published January 5, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI164919.
View: Text | PDF

Astroglial toxicity promotes synaptic degeneration in the thalamocortical circuit in frontotemporal dementia with GRN mutations

  • Text
  • PDF
Abstract

Mutations in the human Progranulin (GRN) gene are a leading cause of frontotemporal lobar degeneration (FTLD). While previous studies implicate aberrant microglial activation as a disease-driving factor in neurodegeneration in the thalamocortical circuit in Grn-/- mice, the exact mechanism for neurodegeneration in FTLD-GRN remains unclear. By performing comparative single-cell transcriptomics in the thalamus and frontal cortex of Grn-/- mice and patients with FTLD-GRN, we have uncovered a highly conserved astroglial pathology characterized by upregulation of gap junction protein GJA1, water channel AQP4, and lipid-binding protein APOE, and downregulation of glutamate transporter SLC1A2 that promoted profound synaptic degeneration across the two species. This astroglial toxicity could be recapitulated in mouse astrocyte-neuron cocultures and by transplanting induced pluripotent stem cell-derived astrocytes to cortical organoids, where Progranulin-deficient astrocytes promoted synaptic degeneration, neuronal stress, and TDP-43 proteinopathy. Together, these results reveal previously unappreciated astroglial pathology as a key mechanism in neurodegeneration in FTLD-GRN.

Authors

Elise Marsan, Dmitry Velmeshev, Arren Ramsey, Ravi K. Patel, Jiasheng Zhang, Mark Koontz, Madeline G. Andrews, Martina de Majo, Cristina Mora, Jessica Blumenfeld, Alissa N. Li, Salvatore Spina, Lea T. Grinberg, William Seeley, Bruce L. Miller, Erik M. Ullian, Matthew F. Krummel, Arnold Kriegstein, Eric J. Huang

×

Highly synchronized cortical circuit dynamics mediate spontaneous pain in mice
Weihua Ding, … , Mark T. Harnett, Shiqian Shen
Weihua Ding, … , Mark T. Harnett, Shiqian Shen
Published January 5, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI166408.
View: Text | PDF

Highly synchronized cortical circuit dynamics mediate spontaneous pain in mice

  • Text
  • PDF
Abstract

Cortical neural dynamics mediate information processing for the cerebral cortex, implicated in fundamental biological processes, such as vision and olfaction, in addition to neurological and psychiatric diseases. Spontaneous pain is a key feature of human neuropathic pain. Whether spontaneous pain pushes cortical network into an aberrant state, and if so, whether it can be brought back to a ‘normal’ operating range to ameliorate pain are unknown. Using a clinically relevant mouse model of neuropathic pain with spontaneous pain-like behavior, we report that orofacial spontaneous pain activated a specific area within the primary somatosensory cortex (S1), displaying synchronized neural dynamics revealed by intravital two-photon calcium imaging. This synchronization was underpinned by local GABAergic interneuron hypoactivity. Pain-induced cortical synchronization could be attenuated by manipulating local S1 networks or clinically effective pain therapies. Specifically, both chemogenetic inhibition of pain-related c-Fos-expressing neurons, and selective activation of GABAergic interneurons, significantly attenuated S1 synchronization. Clinically effective pain therapies including carbamazepine and nerve root decompression could also dampen S1 synchronization. More importantly, restoring a ‘normal’ range of neural dynamics, through attenuating pain-induced S1 synchronization, alleviated pain-like behavior. These results suggest spontaneous pain pushes S1 regional network into a synchronized state, whereas reversal of this synchronization alleviates pain.

Authors

Weihua Ding, Lukas Fischer, Qian Chen, Ziyi Li, Liuyue Yang, Zerong You, Kun Hu, Xinbo Wu, Xue Zhou, Wei Chao, Peter Hu, Tewodros Mulugeta Dagnew, Daniel M. DuBreuil, Shiyu Wang, Suyun Xia, Caroline Bao, Shengmei Zhu, Lucy Chen, Changning Wang, Brian Wainger, Peng Jin, Jianren Mao, Guoping Feng, Mark T. Harnett, Shiqian Shen

×

Clonally expanded HIV-1 proviruses with 5’-Leader defects can give rise to nonsuppressible residual viremia
Jennifer A. White, … , Janet D. Siliciano, Francesco R. Simonetti
Jennifer A. White, … , Janet D. Siliciano, Francesco R. Simonetti
Published January 5, 2023
Citation Information: J Clin Invest. 2023. https://doi.org/10.1172/JCI165245.
View: Text | PDF

Clonally expanded HIV-1 proviruses with 5’-Leader defects can give rise to nonsuppressible residual viremia

  • Text
  • PDF
Abstract

BACKGROUND. Antiretroviral therapy (ART) halts HIV-1 replication, decreasing viremia to below the detection limit of clinical assays. However, some individuals experience persistent nonsuppressible viremia (NSV) originating from CD4+ T cell clones carrying infectious proviruses. Defective proviruses represent over 90% of all proviruses persisting during ART and can express viral genes, but whether they can cause NSV and complicate ART management is unknown. METHODS. We carried an in-depth characterization of proviruses causing NSV in 4 study participants with optimal adherence and no drug resistance. We investigated the impact of the observed defects on 5’-Leader RNA properties, virus infectivity, and gene expression. Integration-site specific assays were used to track these proviruses over time and among cell subsets. RESULTS. Clones carrying proviruses with 5’-Leader defects can cause persistent NSV up to ~103 copies/mL. These proviruses had small, often identical deletions or point mutations involving the major splicing donor site (MSD) and showed partially reduced RNA dimerization and nucleocapsid binding. Nevertheless, they were inducible and produced non-infectious virions containing viral RNA but lacking Envelope. CONCLUSION. These findings show that proviruses with 5’-Leader defects in CD4+ T cell clones can give rise to NSV, affecting clinical care. Sequencing of the 5’-Leader can help understanding failure to completely suppress viremia. FUNDING. Office of the NIH Director and National Institute of Dental & Craniofacial Research, NIH; Howard Hughes Medical Institute; Johns Hopkins University Center for AIDS Research; National Institute for Allergy and Infectious Diseases, NIH, to the PAVE, BEAT-HIV and DARE Martin Delaney collaboratories.

Authors

Jennifer A. White, Fengting Wu, Saif Yasin, Milica Moskovljevic, Joseph Varriale, Filippo Dragoni, Angelica Camilo Contreras, Jiayi Duan, Mei Y. Zheng, Ndeh F. Tadzong, Heer B. Patel, Jeanelle Mae C. Quiambao, Kyle Rhodehouse, Hao Zhang, Jun Lai, Subul A. Beg, Michael Delannoy, Christin Kilcrease, Christopher J. Hoffmann, Sébastien Poulin, Frédéric Chano, Cecile Tremblay, Jerald Cherian, Patricia Barditch-Crovo, Natasha Chida, Richard D. Moore, Michael F. Summers, Robert F. Siliciano, Janet D. Siliciano, Francesco R. Simonetti

×

Intestinal neuropod GUCY2C regulates visceral pain
Joshua R. Barton, … , Manuel Covarrubias, Scott A. Waldman
Joshua R. Barton, … , Manuel Covarrubias, Scott A. Waldman
Published December 22, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI165578.
View: Text | PDF

Intestinal neuropod GUCY2C regulates visceral pain

  • Text
  • PDF
Abstract

Visceral pain (VP) is a global problem with complex etiologies and limited therapeutic options. Guanylyl cyclase C (GUCY2C), an intestinal receptor producing cyclic GMP which regulates luminal fluid secretion, has emerged as a therapeutic target for VP. Indeed, FDA-approved GUCY2C agonists ameliorate VP in patients with chronic constipation syndromes, although analgesic mechanisms remain obscure. Here, we reveal that intestinal GUCY2C is selectively enriched in neuropod cells, a type of enteroendocrine cell that synapses with submucosal neurons in mice and humans. GUCY2CHigh neuropod cells associate with co-cultured dorsal root ganglia neurons and induce hyperexcitability, reducing the rheobase and increasing the resulting number of evoked action potentials. Conversely, the GUCY2C agonist linaclotide eliminated neuronal hyperexcitability produced by GUCY2C-sufficient, but not GUCY2C-deficient, neuropod cells, an effect independent of bulk epithelial cells or extracellular cGMP. Genetic elimination of intestinal GUCY2C amplified nociceptive signaling and VP that was comparable to chemically-induced VP but refractory to linaclotide. Importantly, eliminating GUCY2C selectively in neuropod cells also increased nociceptive signaling and VP that was refractory to linaclotide. In the context of loss of GUCY2C hormones in patients with VP, these observations suggest a specific role for neuropod GUCY2C signaling in the pathophysiology and treatment of these pain syndromes.

Authors

Joshua R. Barton, Annie K. Londregan, Tyler D. Alexander, Ariana A. Entezari, Shely Bar-Ad, Lan Cheng, Angelo C. Lepore, Adam E. Snook, Manuel Covarrubias, Scott A. Waldman

×

Leucine-973 is a crucial residue differentiating insulin and IGF-1 receptor signaling
Hirofumi Nagao, … , Matthias Mann, C. Ronald Kahn
Hirofumi Nagao, … , Matthias Mann, C. Ronald Kahn
Published December 22, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI161472.
View: Text | PDF

Leucine-973 is a crucial residue differentiating insulin and IGF-1 receptor signaling

  • Text
  • PDF
Abstract

Insulin and IGF-1 receptors (IR/IGF1R) are highly homologous and share similar signaling systems, but each has a unique physiological role, with IR primarily regulating metabolic homeostasis and IGF1R regulating mitogenic control and growth. Here, we showed that replacement of a single amino acid at position 973, just distal to the NPEY motif in the intracellular juxtamembrane region, from leucine, which is highly-conserved in IRs, to phenylalanine, the highly-conserved homologous residue in IGF1Rs, resulted in decreased IRS-1-PI3K-Akt-mTORC1 signaling and increased of Shc-Gab1-MAPK-cell cycle signaling. As a result, cells expressing L973F-IR exhibited decreased insulin-induced glucose uptake, increased cell growth and impaired receptor internalization. Mice with knockin of the L973F-IR showed similar alterations in signaling in vivo, and this leaded to decreased insulin sensitivity, a modest increase in growth and decreased weight gain when challenged with high-fat diet. Thus, leucine973 in the juxtamembrane region of the IR acts as a crucial residue differentiating IR signaling from IGF1R signaling.

Authors

Hirofumi Nagao, Weikang Cai, Bruna Brasil Brandão, Nicolai J. Wewer Albrechtsen, Martin Steger, Arijeet K. Gattu, Hui Pan, Jonathan M. Dreyfuss, F. Thomas Wunderlich, Matthias Mann, C. Ronald Kahn

×

Targeting myeloid cell coagulation signaling blocks MAP kinase/TGF-β1 driven fibrotic remodeling in ischemic heart failure
Venkata Garlapati, … , Wolfram Ruf, Philip Wenzel
Venkata Garlapati, … , Wolfram Ruf, Philip Wenzel
Published December 22, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI156436.
View: Text | PDF

Targeting myeloid cell coagulation signaling blocks MAP kinase/TGF-β1 driven fibrotic remodeling in ischemic heart failure

  • Text
  • PDF
Abstract

Despite major advances in acute interventions of myocardial infarction (MI), adverse cardiac remodeling and excess fibrosis post MI causing ischemic heart failure (IHF) remains a leading cause of death worldwide. Here we identify a pro-fibrotic coagulation signaling pathway that can be targeted for improved cardiac function following MI with persistent ischemia. Quantitative phospho-proteomics of cardiac tissue revealed an up-regulated mitogen activated protein kinase (MAPK) pathway in human IHF. Intervention in this pathway with trametinib improves myocardial function and prevents fibrotic remodeling in a murine model of non-reperfused MI. MAPK activation in MI requires myeloid cell signaling of protease activated receptor 2 linked to the cytoplasmic domain of the coagulation initiator tissue factor (TF). They act upstream of pro-oxidant NOX2 NADPH oxidase, ERK1/2 phosphorylation, and activation of pro-fibrotic transforming growth factor β1 (TGF-β1). Specific targeting with the TF inhibitor nematode anticoagulant protein c2 (NAPc2) starting one day after established experimental MI averts IHF. Increased TF cytoplasmic domain phosphorylation in circulating monocytes from patients with sub-acute MI identifies a potential thrombo-inflammatory biomarker reflective of increased risk for IHF and suitable for patient selection to receive targeted TF inhibition therapy.

Authors

Venkata Garlapati, Michael Molitor, Thomas Michna, Gregory S. Harms, Stefanie Finger, Rebecca Jung, Jeremy Lagrange, Panagiotis Efentakis, Johannes Wild, Maike Knorr, Susanne Karbach, Sabine Wild, Ksenija Vujacic-Mirski, Thomas Münzel, Andreas Daiber, Moritz Brandt, Tommaso Gori, Hendrik Milting, Stefan Tenzer, Wolfram Ruf, Philip Wenzel

×

The UBE2C/CDH1/DEPTOR axis is an oncogene-tumor suppressor cascade in lung cancer cells
Shizhen Zhang, … , Xiufang Xiong, Yi Sun
Shizhen Zhang, … , Xiufang Xiong, Yi Sun
Published December 22, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI162434.
View: Text | PDF

The UBE2C/CDH1/DEPTOR axis is an oncogene-tumor suppressor cascade in lung cancer cells

  • Text
  • PDF
Abstract

Ubiquitin-conjugating enzyme E2C (UBE2C) mediates the ubiquitylation chain formation via the K11 linkage. While previous in vitro studies showed that UBE2C plays a growth-promoting role in cancer cell lines, the underlying mechanism remains elusive. Still unknown is whether and how UBE2C plays a promoting role in vivo. Here we reported that UBE2C is indeed essential for growth and survival of lung cancer cells harboring Kras mutations, and UBE2C is required for KrasG12D-induced lung tumorigenesis, since Ube2c deletion significantly inhibits tumor formation and extends the life-span of mice. Mechanistically, KrasG12D induces expression of UBE2C, which couples with APC/CCDH1 E3 ligase to promote ubiquitylation and degradation of DEPTOR, leading to activation of the mTORC signals. Importantly, DEPTOR levels are fluctuated during cell cycle progression in a manner dependent of UBE2C and CDH1, indicating their physiological connection. Finally, Deptor deletion fully rescues the tumor inhibitory effect of Ube2c deletion in the KrasG12D lung tumor model, indicating a causal role of Deptor. Taken together, our study shows that the UBE2C/CDH1/DEPTOR axis forms an oncogene-tumor suppressor cascade that regulates cell cycle progression and autophagy and validates that UBE2C is an attractive target for lung cancer associated with Kras mutations.

Authors

Shizhen Zhang, Xiahong You, Yawen Zheng, Yanwen Shen, Xiufang Xiong, Yi Sun

×

Loss of LGR4/GPR48 causes severe neonatal salt-wasting due to disrupted WNT signaling altering adrenal zonation
Cécily Lucas, … , Florence Roucher-Boulez, Christa E. Fluck
Cécily Lucas, … , Florence Roucher-Boulez, Christa E. Fluck
Published December 20, 2022
Citation Information: J Clin Invest. 2022. https://doi.org/10.1172/JCI164915.
View: Text | PDF

Loss of LGR4/GPR48 causes severe neonatal salt-wasting due to disrupted WNT signaling altering adrenal zonation

  • Text
  • PDF
Abstract

Disorders of isolated mineralocorticoid deficiency causing potentially life-threatening salt-wasting crisis early in life have been associated with gene variants of aldosterone biosynthesis or resistance, but in some patients no such variants are found. WNT/β-catenin signaling is crucial for differentiation and maintenance of the aldosterone producing adrenal zona glomerulosa (zG). We describe a highly consanguineous family with multiple perinatal deaths or infants presenting at birth with failure to thrive, severe salt-wasting crises associated with isolated hypoaldosteronism, nail anomalies, short stature, and deafness. Whole exome sequencing revealed a homozygous splice variant in the R-SPONDIN receptor LGR4 gene (c.618-1G>C) regulating WNT signaling. The resulting transcripts affected protein function and stability, and resulted in loss of Wnt/β-catenin signaling in vitro. The impact of LGR4 inactivation was analyzed by adrenal cortex specific ablation of Lgr4, using Lgr4Flox/Flox mated with Sf1:Cre mice. Inactivation of Lgr4 within the adrenal cortex in the mouse model caused decreased WNT signaling, aberrant zonation with deficient zG and reduced aldosterone production. Thus, human LGR4 mutations establish a direct link between LGR4 inactivation and decreased canonical WNT signaling with abnormal zG differentiation and endocrine function. Therefore, variants in WNT signaling and its regulators should systematically be considered in familial hyperreninemic hypoaldosteronism.

Authors

Cécily Lucas, Kay-Sara Sauter, Michael Steigert, Delphine Mallet, James Wilmouth Jr., Julie Olabe, Ingrid Plotton, Yves Morel, Daniel Aeberli, Franca Wagner, Hans Clevers, Amit V. Pandey, Pierre Val, Florence Roucher-Boulez, Christa E. Fluck

×
  • ← Previous
  • 1
  • 2
  • …
  • 76
  • 77
  • 78
  • …
  • 207
  • 208
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts