Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

News Round Up

Additional cause of dyskeratosis congenita discovered. Coverage by Medical Xpress on Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita.

Diabetes and Alzheimer's risk. Coverage by Medical Daily, Cherry Creek News, Business Standard  and Bioscience Technology on Hyperglycemia modulates extracellular amyloid-β concentrations and neuronal activity in vivo.

Mechanism causing blood pressure drug ineffectiveness identified. Coverage by The Times of India , News-Medical.net, and Medical Xpress on Integrated compensatory network is activated in the absence of NCC phosphorylation.

DNA anomalies in children with chronic kidney disease. Coverage by Renal & Urology News, Medical Xpress, and News-Medical.net, on Genomic imbalances in pediatric patients with chronic kidney disease.

Study identifies why smoking worsens COPD in some patients. Coverage by Healthline, Futurity, and Lung Disease News, and Scicasts on Suppression of NLRX1 in chronic obstructive pulmonary disease.

Effect of oxidative stress on the heart muscle. Coverage by Medical Xpress on Prevention of PKG1α oxidation augments cardioprotection in the stressed heart.

A vascular niche for boosted blood stem cell production. Coverage by Fred Hutchinson Cancer Research Center on Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells.

Role of calcium signaling in controlling inflammation during chronic lung infection. Coverage by Medical Xpress on STIM1 controls T cell–mediated immune regulation and inflammation in chronic infection.

New understanding of eye can prevent eye problems. Coverage by International Business Times on Neurovascular crosstalk between interneurons and capillaries is required for vision.

Preventing stillbirths. Coverage by Nature on CXCR3 blockade protects against Listeria monocytogenes infection–induced fetal wastage.

Published May 12, 2015, by Andy Koopmans

In the News

Related articles

Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita
Hemanth Tummala, … , Thomas Vulliamy, Inderjeet Dokal
Hemanth Tummala, … , Thomas Vulliamy, Inderjeet Dokal
Published April 20, 2015
Citation Information: J Clin Invest. 2015;125(5):2151-2160. https://doi.org/10.1172/JCI78963.
View: Text | PDF
Research Article Aging Genetics Hematology

Poly(A)-specific ribonuclease deficiency impacts telomere biology and causes dyskeratosis congenita

  • Text
  • PDF
Abstract

Dyskeratosis congenita (DC) and related syndromes are inherited, life-threatening bone marrow (BM) failure disorders, and approximately 40% of cases are currently uncharacterized at the genetic level. Here, using whole exome sequencing (WES), we have identified biallelic mutations in the gene encoding poly(A)-specific ribonuclease (PARN) in 3 families with individuals exhibiting severe DC. PARN is an extensively characterized exonuclease with deadenylation activity that controls mRNA stability in part and therefore regulates expression of a large number of genes. The DC-associated mutations identified affect key domains within the protein, and evaluation of patient cells revealed reduced deadenylation activity. This deadenylation deficiency caused an early DNA damage response in terms of nuclear p53 regulation, cell-cycle arrest, and reduced cell viability upon UV treatment. Individuals with biallelic PARN mutations and PARN-depleted cells exhibited reduced RNA levels for several key genes that are associated with telomere biology, specifically TERC, DKC1, RTEL1, and TERF1. Moreover, PARN-deficient cells also possessed critically short telomeres. Collectively, these results identify a role for PARN in telomere maintenance and demonstrate that it is a disease-causing gene in a subset of patients with severe DC.

Authors

Hemanth Tummala, Amanda Walne, Laura Collopy, Shirleny Cardoso, Josu de la Fuente, Sarah Lawson, James Powell, Nicola Cooper, Alison Foster, Shehla Mohammed, Vincent Plagnol, Thomas Vulliamy, Inderjeet Dokal

×

Hyperglycemia modulates extracellular amyloid-β concentrations and neuronal activity in vivo
Shannon L. Macauley, … , Courtney L. Sutphen, David M. Holtzman
Shannon L. Macauley, … , Courtney L. Sutphen, David M. Holtzman
Published May 4, 2015
Citation Information: J Clin Invest. 2015;125(6):2463-2467. https://doi.org/10.1172/JCI79742.
View: Text | PDF
Brief Report Neuroscience

Hyperglycemia modulates extracellular amyloid-β concentrations and neuronal activity in vivo

  • Text
  • PDF
Abstract

Epidemiological studies show that patients with type 2 diabetes (T2DM) and individuals with a diabetes-independent elevation in blood glucose have an increased risk for developing dementia, specifically dementia due to Alzheimer’s disease (AD). These observations suggest that abnormal glucose metabolism likely plays a role in some aspects of AD pathogenesis, leading us to investigate the link between aberrant glucose metabolism, T2DM, and AD in murine models. Here, we combined two techniques — glucose clamps and in vivo microdialysis — as a means to dynamically modulate blood glucose levels in awake, freely moving mice while measuring real-time changes in amyloid-β (Aβ), glucose, and lactate within the hippocampal interstitial fluid (ISF). In a murine model of AD, induction of acute hyperglycemia in young animals increased ISF Aβ production and ISF lactate, which serves as a marker of neuronal activity. These effects were exacerbated in aged AD mice with marked Aβ plaque pathology. Inward rectifying, ATP-sensitive potassium (KATP) channels mediated the response to elevated glucose levels, as pharmacological manipulation of KATP channels in the hippocampus altered both ISF Aβ levels and neuronal activity. Taken together, these results suggest that KATP channel activation mediates the response of hippocampal neurons to hyperglycemia by coupling metabolism with neuronal activity and ISF Aβ levels.

Authors

Shannon L. Macauley, Molly Stanley, Emily E. Caesar, Steven A. Yamada, Marcus E. Raichle, Ronaldo Perez, Thomas E. Mahan, Courtney L. Sutphen, David M. Holtzman

×

Integrated compensatory network is activated in the absence of NCC phosphorylation
P. Richard Grimm, … , James B. Wade, Paul A. Welling
P. Richard Grimm, … , James B. Wade, Paul A. Welling
Published April 20, 2015
Citation Information: J Clin Invest. 2015;125(5):2136-2150. https://doi.org/10.1172/JCI78558.
View: Text | PDF
Research Article Nephrology

Integrated compensatory network is activated in the absence of NCC phosphorylation

  • Text
  • PDF
Abstract

Thiazide diuretics are used to treat hypertension; however, compensatory processes in the kidney can limit antihypertensive responses to this class of drugs. Here, we evaluated compensatory pathways in SPAK kinase–deficient mice, which are unable to activate the thiazide-sensitive sodium chloride cotransporter NCC (encoded by Slc12a3). Global transcriptional profiling, combined with biochemical, cell biological, and physiological phenotyping, identified the gene expression signature of the response and revealed how it establishes an adaptive physiology. Salt reabsorption pathways were created by the coordinate induction of a multigene transport system, involving solute carriers (encoded by Slc26a4, Slc4a8, and Slc4a9), carbonic anhydrase isoforms, and V-type H+-ATPase subunits in pendrin-positive intercalated cells (PP-ICs) and ENaC subunits in principal cells (PCs). A distal nephron remodeling process and induction of jagged 1/NOTCH signaling, which expands the cortical connecting tubule with PCs and replaces acid-secreting α-ICs with PP-ICs, were partly responsible for the compensation. Salt reabsorption was also activated by induction of an α-ketoglutarate (α-KG) paracrine signaling system. Coordinate regulation of a multigene α-KG synthesis and transport pathway resulted in α-KG secretion into pro-urine, as the α-KG–activated GPCR (Oxgr1) increased on the PP-IC apical surface, allowing paracrine delivery of α-KG to stimulate salt transport. Identification of the integrated compensatory NaCl reabsorption mechanisms provides insight into thiazide diuretic efficacy.

Authors

P. Richard Grimm, Yoskaly Lazo-Fernandez, Eric Delpire, Susan M. Wall, Susan G. Dorsey, Edward J. Weinman, Richard Coleman, James B. Wade, Paul A. Welling

×

Genomic imbalances in pediatric patients with chronic kidney disease
Miguel Verbitsky, … , Craig S. Wong, Ali G. Gharavi
Miguel Verbitsky, … , Craig S. Wong, Ali G. Gharavi
Published April 20, 2015
Citation Information: J Clin Invest. 2015;125(5):2171-2178. https://doi.org/10.1172/JCI80877.
View: Text | PDF
Clinical Medicine Genetics Nephrology

Genomic imbalances in pediatric patients with chronic kidney disease

  • Text
  • PDF
Abstract

BACKGROUND. There is frequent uncertainty in the identification of specific etiologies of chronic kidney disease (CKD) in children. Recent studies indicate that chromosomal microarrays can identify rare genomic imbalances that can clarify the etiology of neurodevelopmental and cardiac disorders in children; however, the contribution of unsuspected genomic imbalance to the incidence of pediatric CKD is unknown.

METHODS. We performed chromosomal microarrays to detect genomic imbalances in children enrolled in the Chronic Kidney Disease in Children (CKiD) prospective cohort study, a longitudinal prospective multiethnic observational study of North American children with mild to moderate CKD. Patients with clinically detectable syndromic disease were excluded from evaluation. We compared 419 unrelated children enrolled in CKiD to multiethnic cohorts of 21,575 children and adults that had undergone microarray genotyping for studies unrelated to CKD.

RESULTS. We identified diagnostic copy number disorders in 31 children with CKD (7.4% of the cohort). We detected 10 known pathogenic genomic disorders, including the 17q12 deletion HNF1 homeobox B (HNF1B) and triple X syndromes in 19 of 419 unrelated CKiD cases as compared with 98 of 21,575 control individuals (OR 10.8, P = 6.1 × 10–20). In an additional 12 CKiD cases, we identified 12 likely pathogenic genomic imbalances that would be considered reportable in a clinical setting. These genomic imbalances were evenly distributed among patients diagnosed with congenital and noncongenital forms of CKD. In the vast majority of these cases, the genomic lesion was unsuspected based on the clinical assessment and either reclassified the disease or provided information that might have triggered additional clinical care, such as evaluation for metabolic or neuropsychiatric disease.

CONCLUSION. A substantial proportion of children with CKD have an unsuspected genomic imbalance, suggesting genomic disorders as a risk factor for common forms of pediatric nephropathy. Detection of pathogenic imbalances has practical implications for personalized diagnosis and health monitoring in this population.

TRIAL REGISTRATION. ClinicalTrials.gov NCT00327860.

FUNDING. This work was supported by the NIH, the National Institutes of Diabetes and Digestive and Kidney Diseases (NIDDK), the National Institute of Child Health and Human Development, and the National Heart, Lung, and Blood Institute.

Authors

Miguel Verbitsky, Simone Sanna-Cherchi, David A. Fasel, Brynn Levy, Krzysztof Kiryluk, Matthias Wuttke, Alison G. Abraham, Frederick Kaskel, Anna Köttgen, Bradley A. Warady, Susan L. Furth, Craig S. Wong, Ali G. Gharavi

×

Suppression of NLRX1 in chronic obstructive pulmonary disease
Min-Jong Kang, … , Yeon-Mok Oh, Jack A. Elias
Min-Jong Kang, … , Yeon-Mok Oh, Jack A. Elias
Published May 4, 2015
Citation Information: J Clin Invest. 2015;125(6):2458-2462. https://doi.org/10.1172/JCI71747.
View: Text | PDF
Brief Report Pulmonology

Suppression of NLRX1 in chronic obstructive pulmonary disease

  • Text
  • PDF
Abstract

Cigarette smoke (CS) and viruses promote the inflammation and remodeling associated with chronic obstructive pulmonary disease (COPD). The MAVS/RIG-I–like helicase (MAVS/RLH) pathway and inflammasome-dependent innate immune pathways are important mediators of these responses. At baseline, the MAVS/RLH pathway is suppressed, and this inhibition must be reversed to engender tissue effects; however, the mechanisms that mediate activation and repression of the pathway have not been defined. In addition, the regulation and contribution of MAVS/RLH signaling in CS-induced inflammation and remodeling responses and in the development of human COPD remain unaddressed. Here, we demonstrate that expression of NLRX1, which inhibits the MAVS/RLH pathway and regulates other innate immune responses, was markedly decreased in 3 independent cohorts of COPD patients. NLRX1 suppression correlated directly with disease severity and inversely with pulmonary function, quality of life, and prognosis. In murine models, CS inhibited NLRX1, and CS-induced inflammation, alveolar destruction, protease induction, structural cell apoptosis, and inflammasome activation were augmented in NLRX1-deficient animals. Conversely, MAVS deficiency abrogated this CS-induced inflammation and remodeling. Restoration of NLRX1 in CS-exposed animals ameliorated alveolar destruction. These data support a model in which CS-dependent NLRX1 inhibition facilitates MAVS/RHL activation and subsequent inflammation, remodeling, protease, cell death, and inflammasome responses.

Authors

Min-Jong Kang, Chang Min Yoon, Bo Hye Kim, Chang-Min Lee, Yang Zhou, Maor Sauler, Rober Homer, Anish Dhamija, Daniel Boffa, Andrew Phillip West, Gerald S. Shadel, Jenny P. Ting, John R. Tedrow, Naftali Kaminski, Woo Jin Kim, Chun Geun Lee, Yeon-Mok Oh, Jack A. Elias

×

Prevention of PKG1α oxidation augments cardioprotection in the stressed heart
Taishi Nakamura, … , Philip Eaton, David A. Kass
Taishi Nakamura, … , Philip Eaton, David A. Kass
Published May 4, 2015
Citation Information: J Clin Invest. 2015;125(6):2468-2472. https://doi.org/10.1172/JCI80275.
View: Text | PDF
Brief Report Cardiology

Prevention of PKG1α oxidation augments cardioprotection in the stressed heart

  • Text
  • PDF
Abstract

The cGMP-dependent protein kinase-1α (PKG1α) transduces NO and natriuretic peptide signaling; therefore, PKG1α activation can benefit the failing heart. Disease modifiers such as oxidative stress may depress the efficacy of PKG1α pathway activation and underlie variable clinical results. PKG1α can also be directly oxidized, forming a disulfide bond between homodimer subunits at cysteine 42 to enhance oxidant-stimulated vasorelaxation; however, the impact of PKG1α oxidation on myocardial regulation is unknown. Here, we demonstrated that PKG1α is oxidized in both patients with heart disease and in rodent disease models. Moreover, this oxidation contributed to adverse heart remodeling following sustained pressure overload or Gq agonist stimulation. Compared with control hearts and myocytes, those expressing a redox-dead protein (PKG1αC42S) better adapted to cardiac stresses at functional, histological, and molecular levels. Redox-dependent changes in PKG1α altered intracellular translocation, with the activated, oxidized form solely located in the cytosol, whereas reduced PKG1αC42S translocated to and remained at the outer plasma membrane. This altered PKG1α localization enhanced suppression of transient receptor potential channel 6 (TRPC6), thereby potentiating antihypertrophic signaling. Together, these results demonstrate that myocardial PKG1α oxidation prevents a beneficial response to pathological stress, may explain variable responses to PKG1α pathway stimulation in heart disease, and indicate that maintaining PKG1α in its reduced form may optimize its intrinsic cardioprotective properties.

Authors

Taishi Nakamura, Mark J. Ranek, Dong I. Lee, Virginia Shalkey Hahn, Choel Kim, Philip Eaton, David A. Kass

×

Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells
Jennifer L. Gori, … , Shahin Rafii, Hans-Peter Kiem
Jennifer L. Gori, … , Shahin Rafii, Hans-Peter Kiem
Published February 9, 2015
Citation Information: J Clin Invest. 2015;125(3):1243-1254. https://doi.org/10.1172/JCI79328.
View: Text | PDF
Technical Advance Stem cells

Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells

  • Text
  • PDF
Abstract

Pluripotent stem cells (PSCs) represent an alternative hematopoietic stem cell (HSC) source for treating hematopoietic disease. The limited engraftment of human PSC–derived (hPSC-derived) multipotent progenitor cells (MPP) has hampered the clinical application of these cells and suggests that MPP require additional cues for definitive hematopoiesis. We hypothesized that the presence of a vascular niche that produces Notch ligands jagged-1 (JAG1) and delta-like ligand-4 (DLL4) drives definitive hematopoiesis. We differentiated hes2 human embryonic stem cells (hESC) and Macaca nemestrina–induced PSC (iPSC) line-7 with cytokines in the presence or absence of endothelial cells (ECs) that express JAG1 and DLL4. Cells cocultured with ECs generated substantially more CD34+CD45+ hematopoietic progenitors compared with cells cocultured without ECs or with ECs lacking JAG1 or DLL4. EC-induced cells exhibited Notch activation and expressed HSC-specific Notch targets RUNX1 and GATA2. EC-induced PSC-MPP engrafted at a markedly higher level in NOD/SCID/IL-2 receptor γ chain–null (NSG) mice compared with cytokine-induced cells, and low-dose chemotherapy-based selection further increased engraftment. Long-term engraftment and the myeloid-to-lymphoid ratio achieved with vascular niche induction were similar to levels achieved for cord blood–derived MPP and up to 20-fold higher than those achieved with hPSC-derived MPP engraftment. Our findings indicate that endothelial Notch ligands promote PSC-definitive hematopoiesis and production of long-term engrafting CD34+ cells, suggesting these ligands are critical for HSC emergence.

Authors

Jennifer L. Gori, Jason M. Butler, Yan-Yi Chan, Devikha Chandrasekaran, Michael G. Poulos, Michael Ginsberg, Daniel J. Nolan, Olivier Elemento, Brent L. Wood, Jennifer E. Adair, Shahin Rafii, Hans-Peter Kiem

×

STIM1 controls T cell–mediated immune regulation and inflammation in chronic infection
Ludovic Desvignes, … , Joel D. Ernst, Stefan Feske
Ludovic Desvignes, … , Joel D. Ernst, Stefan Feske
Published May 4, 2015
Citation Information: J Clin Invest. 2015;125(6):2347-2362. https://doi.org/10.1172/JCI80273.
View: Text | PDF
Research Article Immunology Infectious disease Microbiology

STIM1 controls T cell–mediated immune regulation and inflammation in chronic infection

  • Text
  • PDF
Abstract

Chronic infections induce a complex immune response that controls pathogen replication, but also causes pathology due to sustained inflammation. Ca2+ influx mediates T cell function and immunity to infection, and patients with inherited mutations in the gene encoding the Ca2+ channel ORAI1 or its activator stromal interaction molecule 1 (STIM1) are immunodeficient and prone to chronic infection by various pathogens, including Mycobacterium tuberculosis (Mtb). Here, we demonstrate that STIM1 is required for T cell–mediated immune regulation during chronic Mtb infection. Compared with WT animals, mice with T cell–specific Stim1 deletion died prematurely during the chronic phase of infection and had increased bacterial burdens and severe pulmonary inflammation, with increased myeloid and lymphoid cell infiltration. Although STIM1-deficient T cells exhibited markedly reduced IFN-γ production during the early phase of Mtb infection, bacterial growth was not immediately exacerbated. During the chronic phase, however, STIM1-deficient T cells displayed enhanced IFN-γ production in response to elevated levels of IL-12 and IL-18. The lack of STIM1 in T cells was associated with impaired activation-induced cell death upon repeated TCR engagement and pulmonary lymphocytosis and hyperinflammation in Mtb-infected mice. Chronically Mtb-infected, STIM1-deficient mice had reduced levels of inducible regulatory T cells (iTregs) due to a T cell–intrinsic requirement for STIM1 in iTreg differentiation and excessive production of IFN-γ and IL-12, which suppress iTreg differentiation and maintenance. Thus, STIM1 controls multiple aspects of T cell–mediated immune regulation to limit injurious inflammation during chronic infection.

Authors

Ludovic Desvignes, Carl Weidinger, Patrick Shaw, Martin Vaeth, Theo Ribierre, Menghan Liu, Tawania Fergus, Lina Kozhaya, Lauren McVoy, Derya Unutmaz, Joel D. Ernst, Stefan Feske

×

Neurovascular crosstalk between interneurons and capillaries is required for vision
Yoshihiko Usui, … , Michael I. Dorrell, Martin Friedlander
Yoshihiko Usui, … , Michael I. Dorrell, Martin Friedlander
Published April 27, 2015
Citation Information: J Clin Invest. 2015;125(6):2335-2346. https://doi.org/10.1172/JCI80297.
View: Text | PDF
Research Article Vascular biology

Neurovascular crosstalk between interneurons and capillaries is required for vision

  • Text
  • PDF
Abstract

Functional interactions between neurons, vasculature, and glia within neurovascular units are critical for maintenance of the retina and other CNS tissues. For example, the architecture of the neurosensory retina is a highly organized structure with alternating layers of neurons and blood vessels that match the metabolic demand of neuronal activity with an appropriate supply of oxygen within perfused blood. Here, using murine genetic models and cell ablation strategies, we have demonstrated that a subset of retinal interneurons, the amacrine and horizontal cells, form neurovascular units with capillaries in 2 of the 3 retinal vascular plexuses. Moreover, we determined that these cells are required for generating and maintaining the intraretinal vasculature through precise regulation of hypoxia-inducible and proangiogenic factors, and that amacrine and horizontal cell dysfunction induces alterations to the intraretinal vasculature and substantial visual deficits. These findings demonstrate that specific retinal interneurons and the intraretinal vasculature are highly interdependent, and loss of either or both elicits profound effects on photoreceptor survival and function.

Authors

Yoshihiko Usui, Peter D. Westenskow, Toshihide Kurihara, Edith Aguilar, Susumu Sakimoto, Liliana P. Paris, Carli Wittgrove, Daniel Feitelberg, Mollie S.H. Friedlander, Stacey K. Moreno, Michael I. Dorrell, Martin Friedlander

×

CXCR3 blockade protects against Listeria monocytogenes infection–induced fetal wastage
Vandana Chaturvedi, … , Helen N. Jones, Sing Sing Way
Vandana Chaturvedi, … , Helen N. Jones, Sing Sing Way
Published March 9, 2015
Citation Information: J Clin Invest. 2015;125(4):1713-1725. https://doi.org/10.1172/JCI78578.
View: Text | PDF
Research Article Immunology

CXCR3 blockade protects against Listeria monocytogenes infection–induced fetal wastage

  • Text
  • PDF
Abstract

Mammalian pregnancy requires protection against immunological rejection of the developing fetus bearing discordant paternal antigens. Immune evasion in this developmental context entails silenced expression of chemoattractant proteins (chemokines), thereby preventing harmful immune cells from penetrating the maternal-fetal interface. Here, we demonstrate that fetal wastage triggered by prenatal Listeria monocytogenes infection is driven by placental recruitment of CXCL9-producing inflammatory neutrophils and macrophages that promote infiltration of fetal-specific T cells into the decidua. Maternal CD8+ T cells with fetal specificity upregulated expression of the chemokine receptor CXCR3 and, together with neutrophils and macrophages, were essential for L. monocytogenes–induced fetal resorption. Conversely, decidual accumulation of maternal T cells with fetal specificity and fetal wastage were extinguished by CXCR3 blockade or in CXCR3-deficient mice. Remarkably, protection against fetal wastage and in utero L. monocytogenes invasion was maintained even when CXCR3 neutralization was initiated after infection, and this protective effect extended to fetal resorption triggered by partial ablation of immune-suppressive maternal Tregs, which expand during pregnancy to sustain fetal tolerance. Together, our results indicate that functionally overriding chemokine silencing at the maternal-fetal interface promotes the pathogenesis of prenatal infection and suggest that therapeutically reinforcing this pathway represents a universal approach for mitigating immune-mediated pregnancy complications.

Authors

Vandana Chaturvedi, James M. Ertelt, Tony T. Jiang, Jeremy M. Kinder, Lijun Xin, Kathryn J. Owens, Helen N. Jones, Sing Sing Way

×
Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts