Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
Suppression of NLRX1 in chronic obstructive pulmonary disease
Min-Jong Kang, … , Yeon-Mok Oh, Jack A. Elias
Min-Jong Kang, … , Yeon-Mok Oh, Jack A. Elias
Published May 4, 2015
Citation Information: J Clin Invest. 2015;125(6):2458-2462. https://doi.org/10.1172/JCI71747.
View: Text | PDF
Brief Report Pulmonology

Suppression of NLRX1 in chronic obstructive pulmonary disease

  • Text
  • PDF
Abstract

Cigarette smoke (CS) and viruses promote the inflammation and remodeling associated with chronic obstructive pulmonary disease (COPD). The MAVS/RIG-I–like helicase (MAVS/RLH) pathway and inflammasome-dependent innate immune pathways are important mediators of these responses. At baseline, the MAVS/RLH pathway is suppressed, and this inhibition must be reversed to engender tissue effects; however, the mechanisms that mediate activation and repression of the pathway have not been defined. In addition, the regulation and contribution of MAVS/RLH signaling in CS-induced inflammation and remodeling responses and in the development of human COPD remain unaddressed. Here, we demonstrate that expression of NLRX1, which inhibits the MAVS/RLH pathway and regulates other innate immune responses, was markedly decreased in 3 independent cohorts of COPD patients. NLRX1 suppression correlated directly with disease severity and inversely with pulmonary function, quality of life, and prognosis. In murine models, CS inhibited NLRX1, and CS-induced inflammation, alveolar destruction, protease induction, structural cell apoptosis, and inflammasome activation were augmented in NLRX1-deficient animals. Conversely, MAVS deficiency abrogated this CS-induced inflammation and remodeling. Restoration of NLRX1 in CS-exposed animals ameliorated alveolar destruction. These data support a model in which CS-dependent NLRX1 inhibition facilitates MAVS/RHL activation and subsequent inflammation, remodeling, protease, cell death, and inflammasome responses.

Authors

Min-Jong Kang, Chang Min Yoon, Bo Hye Kim, Chang-Min Lee, Yang Zhou, Maor Sauler, Rober Homer, Anish Dhamija, Daniel Boffa, Andrew Phillip West, Gerald S. Shadel, Jenny P. Ting, John R. Tedrow, Naftali Kaminski, Woo Jin Kim, Chun Geun Lee, Yeon-Mok Oh, Jack A. Elias

×

Full Text PDF | Download (820.09 KB)

Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts