Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI118246

Vitronectin enhances internalization of crocidolite asbestos by rabbit pleural mesothelial cells via the integrin alpha v beta 5.

A M Boylan, D A Sanan, D Sheppard, and V C Broaddus

Department of Medicine, San Francisco General Hospital, California 94110, USA.

Find articles by Boylan, A. in: PubMed | Google Scholar

Department of Medicine, San Francisco General Hospital, California 94110, USA.

Find articles by Sanan, D. in: PubMed | Google Scholar

Department of Medicine, San Francisco General Hospital, California 94110, USA.

Find articles by Sheppard, D. in: PubMed | Google Scholar

Department of Medicine, San Francisco General Hospital, California 94110, USA.

Find articles by Broaddus, V. in: PubMed | Google Scholar

Published October 1, 1995 - More info

Published in Volume 96, Issue 4 on October 1, 1995
J Clin Invest. 1995;96(4):1987–2001. https://doi.org/10.1172/JCI118246.
© 1995 The American Society for Clinical Investigation
Published October 1, 1995 - Version history
View PDF
Abstract

The mechanism by which pleural mesothelial cells, the likely progenitor cells of asbestos-induced mesothelioma, recognize and internalize crocidolite asbestos is unknown. Because incubation of asbestos fibers with serum increases their association with cells, we asked whether a protein coat on asbestos increased internalization of fibers via specific cellular receptors. Coating crocidolite with citronectin, but not with fibronectin or other proteins, increased fiber internalization by rabbit pleural mesothelial cells, as measured by a new technique using fluorescence confocal microscopy. Receptors for vitronectin, alpha v beta 3 and alpha v beta 5, were identified on mesothelial cells. Inhibiting vitronectin receptors by plating cells on a vitronectin substrate or incubating cells with excess soluble vitronectin reduced internalization of vitronectin-coated crocidolite. Inhibition of alpha v beta 5, but not alpha v beta 3, with blocking antibodies similarly reduced internalization. In addition, alpha v beta 5, but not alpha v beta 3, showed immunocytochemical colocalization with fibers. Of biologic relevance, coating crocidolite with serum also increased internalization via alpha v beta 5, an effect dependent on the vitronectin in serum. We conclude that pleural mesothelial cells recognize and internalize vitronectin- and serum-coated asbestos via the integrin alpha v beta 5. Since integrins initiate some of the same signaling pathways as does asbestos, our findings may provide insights into the mechanisms of asbestos-induced biologic effects.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1987
page 1987
icon of scanned page 1988
page 1988
icon of scanned page 1989
page 1989
icon of scanned page 1990
page 1990
icon of scanned page 1991
page 1991
icon of scanned page 1992
page 1992
icon of scanned page 1993
page 1993
icon of scanned page 1994
page 1994
icon of scanned page 1995
page 1995
icon of scanned page 1996
page 1996
icon of scanned page 1997
page 1997
icon of scanned page 1998
page 1998
icon of scanned page 1999
page 1999
icon of scanned page 2000
page 2000
icon of scanned page 2001
page 2001
Version history
  • Version 1 (October 1, 1995): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts