Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Usage Information

Vitronectin enhances internalization of crocidolite asbestos by rabbit pleural mesothelial cells via the integrin alpha v beta 5.
A M Boylan, … , D Sheppard, V C Broaddus
A M Boylan, … , D Sheppard, V C Broaddus
Published October 1, 1995
Citation Information: J Clin Invest. 1995;96(4):1987-2001. https://doi.org/10.1172/JCI118246.
View: Text | PDF
Research Article

Vitronectin enhances internalization of crocidolite asbestos by rabbit pleural mesothelial cells via the integrin alpha v beta 5.

  • Text
  • PDF
Abstract

The mechanism by which pleural mesothelial cells, the likely progenitor cells of asbestos-induced mesothelioma, recognize and internalize crocidolite asbestos is unknown. Because incubation of asbestos fibers with serum increases their association with cells, we asked whether a protein coat on asbestos increased internalization of fibers via specific cellular receptors. Coating crocidolite with citronectin, but not with fibronectin or other proteins, increased fiber internalization by rabbit pleural mesothelial cells, as measured by a new technique using fluorescence confocal microscopy. Receptors for vitronectin, alpha v beta 3 and alpha v beta 5, were identified on mesothelial cells. Inhibiting vitronectin receptors by plating cells on a vitronectin substrate or incubating cells with excess soluble vitronectin reduced internalization of vitronectin-coated crocidolite. Inhibition of alpha v beta 5, but not alpha v beta 3, with blocking antibodies similarly reduced internalization. In addition, alpha v beta 5, but not alpha v beta 3, showed immunocytochemical colocalization with fibers. Of biologic relevance, coating crocidolite with serum also increased internalization via alpha v beta 5, an effect dependent on the vitronectin in serum. We conclude that pleural mesothelial cells recognize and internalize vitronectin- and serum-coated asbestos via the integrin alpha v beta 5. Since integrins initiate some of the same signaling pathways as does asbestos, our findings may provide insights into the mechanisms of asbestos-induced biologic effects.

Authors

A M Boylan, D A Sanan, D Sheppard, V C Broaddus

×

Usage data is cumulative from March 2022 through March 2023.

Usage JCI PMC
Text version 133 0
PDF 22 13
Scanned page 252 1
Citation downloads 20 0
Totals 427 14
Total Views 441
(Click and drag on plot area to zoom in. Click legend items above to toggle)

Usage information is collected from two different sources: this site (JCI) and Pubmed Central (PMC). JCI information (compiled daily) shows human readership based on methods we employ to screen out robotic usage. PMC information (aggregated monthly) is also similarly screened of robotic usage.

Various methods are used to distinguish robotic usage. For example, Google automatically scans articles to add to its search index and identifies itself as robotic; other services might not clearly identify themselves as robotic, or they are new or unknown as robotic. Because this activity can be misinterpreted as human readership, data may be re-processed periodically to reflect an improved understanding of robotic activity. Because of these factors, readers should consider usage information illustrative but subject to change.

Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts