Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI115114

Familial chylomicronemia (type I hyperlipoproteinemia) due to a single missense mutation in the lipoprotein lipase gene.

D Ameis, J Kobayashi, R C Davis, O Ben-Zeev, M J Malloy, J P Kane, G Lee, H Wong, R J Havel, and M C Schotz

Veterans Administration Wadsworth Medical Center, Los Angeles, California 90073.

Find articles by Ameis, D. in: PubMed | Google Scholar

Veterans Administration Wadsworth Medical Center, Los Angeles, California 90073.

Find articles by Kobayashi, J. in: PubMed | Google Scholar

Veterans Administration Wadsworth Medical Center, Los Angeles, California 90073.

Find articles by Davis, R. in: PubMed | Google Scholar

Veterans Administration Wadsworth Medical Center, Los Angeles, California 90073.

Find articles by Ben-Zeev, O. in: PubMed | Google Scholar

Veterans Administration Wadsworth Medical Center, Los Angeles, California 90073.

Find articles by Malloy, M. in: PubMed | Google Scholar

Veterans Administration Wadsworth Medical Center, Los Angeles, California 90073.

Find articles by Kane, J. in: PubMed | Google Scholar

Veterans Administration Wadsworth Medical Center, Los Angeles, California 90073.

Find articles by Lee, G. in: PubMed | Google Scholar

Veterans Administration Wadsworth Medical Center, Los Angeles, California 90073.

Find articles by Wong, H. in: PubMed | Google Scholar

Veterans Administration Wadsworth Medical Center, Los Angeles, California 90073.

Find articles by Havel, R. in: PubMed | Google Scholar

Veterans Administration Wadsworth Medical Center, Los Angeles, California 90073.

Find articles by Schotz, M. in: PubMed | Google Scholar

Published April 1, 1991 - More info

Published in Volume 87, Issue 4 on April 1, 1991
J Clin Invest. 1991;87(4):1165–1170. https://doi.org/10.1172/JCI115114.
© 1991 The American Society for Clinical Investigation
Published April 1, 1991 - Version history
View PDF
Abstract

Complete deficiency of lipoprotein lipase (LPL) causes the chylomicronemia syndrome. To understand the molecular basis of LPL deficiency, two siblings with drastically reduced postheparin plasma lipolytic activities were selected for analysis of their LPL gene. We used the polymerase chain reaction to examine the nine coding LPL exons in the two affected siblings and three relatives. DNA sequence analysis revealed a single nucleotide change compared with the normal LPL cDNA: a G----A substitution at nucleotide position 680. This transition caused a replacement of glutamic acid for glycine at amino acid residue 142 of the mature LPL protein. Amino acid sequence comparisons of the region surrounding glycine-142 indicated that it is highly conserved among lipases from different species, suggesting a crucial role of this domain for the LPL structure. Expression studies of the mutant LPL cDNA in COS-7 cells produced normal amounts of enzyme mass. However, the mutated LPL was not catalytically active, nor was it efficiently secreted from the cells. This established that the Gly----Glu substitution at amino acid 142 is sufficient to abolish enzymatic activity and to result in the chylomicronemia syndrome observed in these patients.

Images.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1165
page 1165
icon of scanned page 1166
page 1166
icon of scanned page 1167
page 1167
icon of scanned page 1168
page 1168
icon of scanned page 1169
page 1169
icon of scanned page 1170
page 1170
Version history
  • Version 1 (April 1, 1991): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts