Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI106181

Treatment of leukemia with large doses of methotrexate and folinic acid: clinical-biochemical correlates

William M. Hryniuk and Joseph R. Bertino

Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510

Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06510

Find articles by Hryniuk, W. in: PubMed | Google Scholar

Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510

Department of Medicine, Yale University School of Medicine, New Haven, Connecticut 06510

Find articles by Bertino, J. in: PubMed | Google Scholar

Published November 1, 1969 - More info

Published in Volume 48, Issue 11 on November 1, 1969
J Clin Invest. 1969;48(11):2140–2155. https://doi.org/10.1172/JCI106181.
© 1969 The American Society for Clinical Investigation
Published November 1, 1969 - Version history
View PDF
Abstract

Patients with acute leukemia were given repeated cycles consisting of infusions of methotrexate followed by “rescue” with folinic acid. Peripheral blood leukemic cells were harvested from patients before cyclical treatment, and the rates of incorporation of thymidine and of deoxyuridine into deoxyribonucleic acid (DNA) were measuared in vitro. There was no relationship between the pretreatment incorporation of either deoxynucleoside into DNA and the clinical response to therapy. Methotrexate suppressed deoxyuridine incorporation into DNA by the leukemic blasts in vitro, but the patients whose cells were most sensitive to this effect did not necessarily go into remission when treated.

Leukemic cells were sampled during methotrexate infusions and the deoxynucleoside incorporation rates were determined. Thymidine incorporation into DNA was variably affected. If, by the end of the first infusion, it remained elevated, remission rarely followed, whereas if it was below the pretreatment value, remission was much more likely. In all cases, deoxyuridine incorporation was suppressed during the infusion. The greatest suppression occurred in patients who went on to remission, but the suppression did not correlate with that expected from pretreatment in vitro tests unless due weight was given to the concomitant effects of the methotrexate therapy on thymidine incorporation.

Leukemic blasts surviving successive cycles of therapy became progressively more resistant to the suppressing effects of methotrexate in vitro. This resistance became especially marked in the blasts of patients who did not go into remission.

During methotrexate infusions, inhibition of leukemic cell dihydrofolate reductase activity was greatest in blasts of patients whose disease subsequently remitted.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 2140
page 2140
icon of scanned page 2141
page 2141
icon of scanned page 2142
page 2142
icon of scanned page 2143
page 2143
icon of scanned page 2144
page 2144
icon of scanned page 2145
page 2145
icon of scanned page 2146
page 2146
icon of scanned page 2147
page 2147
icon of scanned page 2148
page 2148
icon of scanned page 2149
page 2149
icon of scanned page 2150
page 2150
icon of scanned page 2151
page 2151
icon of scanned page 2152
page 2152
icon of scanned page 2153
page 2153
icon of scanned page 2154
page 2154
icon of scanned page 2155
page 2155
Version history
  • Version 1 (November 1, 1969): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts