T cell reactivity to minor histocompatibility (mH) antigens is responsible for rejection of HLA-matched allografts, limiting the effectiveness of transplantation for the treatment of end-stage organ failure. The deadbox gene Dby is located on the Y chromosome and encodes an mH antigen that prompts rejection of male tissues by female mice. Establishing a network of regulatory T (Treg) cells that is capable of coercing naive cells to adopt a tolerant phenotype offers an attractive strategy for immune intervention in such deleterious immune responses. While various approaches have successfully induced a dominant form of transplantation tolerance, they share the propensity to provoke chronic, incomplete activation of T cells. By identifying the T cell receptor (TCR) contact sites of the dominant epitope of the Dby gene product, we have designed an altered peptide ligand (APL) that delivers incomplete signals to naive T cells from A1 ∞ RAG1–/– mice that are transgenic for a complementary TCR. Administration of this APL to female transgenic mice polarizes T cells toward a regulatory phenotype, securing a form of dominant tolerance to male skin grafts that is capable of resisting rejection by naive lymphocytes. Our results demonstrate that incomplete signaling through the TCR may establish a network of Treg cells that may be harnessed in the service of transplantation tolerance.
Tse-Ching Chen, Herman Waldmann, Paul J. Fairchild
Deregulated expression of both Myc and Bcl-XL are consistent features of human plasma cell neoplasms (PCNs). To investigate whether targeted expression of Myc and Bcl-XL in mouse plasma cells might lead to an improved model of human PCN, we generated Myc transgenics by inserting a single-copy histidine-tagged mouse Myc gene, MycHis, into the mouse Ig heavy-chain Cα locus. We also generated Bcl-XL transgenic mice that contain a multicopy Flag-tagged mouse Bcl-xFlag transgene driven by the mouse Ig κ light-chain 3′ enhancer. Single-transgenic Bcl-XL mice remained tumor free by 380 days of age, whereas single-transgenic Myc mice developed B cell tumors infrequently (4 of 43, 9.3%). In contrast, double-transgenic Myc/Bcl-XL mice developed plasma cell tumors with short onset (135 days on average) and full penetrance (100% tumor incidence). These tumors produced monoclonal Ig, infiltrated the bone marrow, and contained elevated amounts of MycHis and Bcl-XLFlag proteins compared with the plasma cells that accumulated in large numbers in young tumor-free Myc/Bcl-XL mice. Our findings demonstrate that the enforced expression of Myc and Bcl-XL by Ig enhancers with peak activity in plasma cells generates a mouse model of human PCN that recapitulates some features of human multiple myeloma.
Wan Cheung Cheung, Joong Su Kim, Michael Linden, Liangping Peng, Brian Van Ness, Roberto D. Polakiewicz, Siegfried Janz
PTEN is a tumor suppressor gene mutated in many human cancers, and its expression is reduced or absent in almost half of hepatoma patients. We used the Cre-loxP system to generate a hepatocyte-specific null mutation of Pten in mice (AlbCrePtenflox/flox mice). AlbCrePtenflox/flox mice showed massive hepatomegaly and steatohepatitis with triglyceride accumulation, a phenotype similar to human nonalcoholic steatohepatitis. Adipocyte-specific genes were induced in mutant hepatocytes, implying adipogenic-like transformation of these cells. Genes involved in lipogenesis and β-oxidation were also induced, possibly as a result of elevated levels of the transactivating factors PPARγ and SREBP1c. Importantly, the loss of Pten function in the liver led to tumorigenesis, with 47% of AlbCrePtenflox/flox livers developing liver cell adenomas by 44 weeks of age. By 74–78 weeks of age, 100% of AlbCrePtenflox/flox livers showed adenomas and 66% had hepatocellular carcinomas. AlbCrePtenflox/flox mice also showed insulin hypersensitivity. In vitro, AlbCrePtenflox/flox hepatocytes were hyperproliferative and showed increased hyperoxidation with abnormal activation of protein kinase B and MAPK. Pten is thus an important regulator of lipogenesis, glucose metabolism, hepatocyte homeostasis, and tumorigenesis in the liver.
Yasuo Horie, Akira Suzuki, Ei Kataoka, Takehiko Sasaki, Koichi Hamada, Junko Sasaki, Katsunori Mizuno, Go Hasegawa, Hiroyuki Kishimoto, Masahiro Iizuka, Makoto Naito, Katsuhiko Enomoto, Sumio Watanabe, Tak Wah Mak, Toru Nakano
Small molecule inhibitors, such as imatinib, are effective therapies for tyrosine kinase fusions BCR-ABL–TEL-PDGFβR–mediated human leukemias, but resistance may develop. The unique fusion junctions of these molecules are attractive candidates for molecularly targeted therapeutic intervention using RNA interference (RNAi), which is mediated by small interfering RNA (siRNA). We developed a retroviral system for stable expression of siRNA directed to the unique fusion junction sequence of TEL-PDGFβR in transformed hematopoietic cells. Stable expression of the siRNA resulted in approximately 90% inhibition of TEL-PDGFβR expression and its downstream effectors, including PI3K and mammalian target of rapamycin (mTOR). Expression of TEL-PDGFβR–specific siRNA (TPsiRNA) significantly attenuated the proliferation of TEL-PDGFβR–transformed Ba/F3 cells or disease latency and penetrance in mice induced by intravenous injection of these Ba/F3 cells. Although a 90% reduction in TEL-PDGFβR expression was insufficient to induce cell death, stable siRNA expression sensitized transformed cells to the PDGFβR inhibitor imatinib or to the mTOR inhibitor rapamycin. TPsiRNA also inhibited an imatinib-resistant TEL-PDGFβR mutant, and the inhibition was enhanced by siRNA in combination with PKC412, another PDGFβR inhibitor. Although siRNA delivery in vivo is a challenging problem, stable expression of siRNA, which targets oncogenic fusion genes, may potentiate the effects of conventional therapy for hematologic malignancies.
Jing Chen, Nathan R. Wall, Kerry Kocher, Nicole Duclos, Doriano Fabbro, Donna Neuberg, James D. Griffin, Yang Shi, D. Gary Gilliland
A lack of relevant animal models has hampered preclinical screening and critical evaluation of the efficacy of human vaccines in vivo. Carcinoembryonic antigen–A2Kb (CEA–A2Kb) double transgenic mice provide a biologically relevant model for preclinical screening and critical evaluation of human CEA vaccine efficacy in vivo, particularly because such animals are peripherally tolerant of CEA. We established the utility of this model by demonstrating that an oral DNA minigene vaccine induces effective HLA-A2–restricted, CEA-specific antitumor CTL responses. This finding is supported by three lines of evidence: (a) an effective HLA-A2–restricted, CEA691-specific CTL response; (b) specific in vitro killing of CEA-A2Kb transduced MC-38 colon carcinoma cells; and (c) protective immunity induced in vaccinated mice against challenges of these tumor cells. Importantly, peripheral T cell tolerance against CEA in CEA-A2Kb double transgenic mice was broken by the CEA691 (IMIGVLVGV) minigene vaccine. In conclusion, CEA-A2Kb double transgenic mice were demonstrated to be good candidates for in vivo testing of human CEA–based vaccines. This result suggests a potential for these vaccines in future human vaccine development. The feasibility of using nonmutated self-antigens as targets for therapeutic vaccinations was indicated, provided that such antigens are presented in an immunogenic context; that is, as a DNA minigene in a bacterial carrier system.
He Zhou, Yunping Luo, Masato Mizutani, Noriko Mizutani, Jürgen C. Becker, F. James Primus, Rong Xiang, Ralph A. Reisfeld
Environmental stresses converge on the mitochondria that can trigger or inhibit cell death. Excitable, postmitotic cells, in response to sublethal noxious stress, engage mechanisms that afford protection from subsequent insults. We show that reoxygenation after prolonged hypoxia reduces the reactive oxygen species (ROS) threshold for the mitochondrial permeability transition (MPT) in cardiomyocytes and that cell survival is steeply negatively correlated with the fraction of depolarized mitochondria. Cell protection that exhibits a memory (preconditioning) results from triggered mitochondrial swelling that causes enhanced substrate oxidation and ROS production, leading to redox activation of PKC, which inhibits glycogen synthase kinase-3β (GSK-3β). Alternatively, receptor tyrosine kinase or certain G protein–coupled receptor activation elicits cell protection (without mitochondrial swelling or durable memory) by inhibiting GSK-3β, via protein kinase B/Akt and mTOR/p70s6k pathways, PKC pathways, or protein kinase A pathways. The convergence of these pathways via inhibition of GSK-3β on the end effector, the permeability transition pore complex, to limit MPT induction is the general mechanism of cardiomyocyte protection.
Magdalena Juhaszova, Dmitry B. Zorov, Suhn-Hee Kim, Salvatore Pepe, Qin Fu, Kenneth W. Fishbein, Bruce D. Ziman, Su Wang, Kirsti Ytrehus, Christopher L. Antos, Eric N. Olson, Steven J. Sollott
Lichen sclerosus is a common, acquired chronic inflammatory skin disease of unknown etiology, although circulating autoantibodies to the glycoprotein extracellular matrix protein 1 (ECM1) have been detected in most patients’ sera. We have examined the nature of ECM1 epitopes in lichen sclerosus sera, developed an ELISA system for serologic diagnosis, and assessed clinicopathological correlation between ELISA titer and disease. Epitope-mapping studies revealed that lichen sclerosus sera most frequently recognized the distal second tandem repeat domain and carboxyl-terminus of ECM1. We analyzed serum autoantibody reactivity against this immunodominant epitope in 413 individuals (95 subjects with lichen sclerosus, 161 normal control subjects, and 157 subjects with other autoimmune basement membrane or sclerosing diseases). The ELISA assay was highly sensitive; 76 of 95 lichen sclerosus patients (80.0%) exhibited IgG reactivity. It was also highly specific (93.7%) in discriminating between lichen sclerosus and other disease/control sera. Higher anti-ECM1 titers also correlated with more longstanding and refractory disease and cases complicated by squamous cell carcinoma. Furthermore, passive transfer of affinity-purified patient IgG reproduced some histologic and immunopathologic features of lichen sclerosus skin. This new ELISA is valuable for the accurate detection and quantification of anti-ECM1 autoantibodies. Moreover, the values may have clinical significance in patients with lichen sclerosus.
Noritaka Oyama, Ien Chan, Sallie M. Neill, Andrew P. South, Fenella Wojnarowska, Yoshio Kawakami, David D’Cruz, Kirti Mepani, Graham J. Hughes, Balbir S. Bhogal, Fumio Kaneko, Martin M. Black, John A. McGrath
While macro- and microscopic kidney development appear to proceed normally in mice that lack Foxi1, electron microscopy reveals an altered ultrastructure of cells lining the distal nephron. Northern blot analyses, cRNA in situ hybridizations, and immunohistochemistry demonstrate a complete loss of expression of several anion transporters, proton pumps, and anion exchange proteins expressed by intercalated cells of the collecting ducts, many of which have been implicated in hereditary forms of distal renal tubular acidosis (dRTA). In Foxi1-null mutants the normal epithelium with its two major cell types — principal and intercalated cells — has been replaced by a single cell type positive for both principal and intercalated cell markers. To test the functional consequences of these alterations, Foxi1–/– mice were compared with WT littermates in their response to an acidic load. This revealed an inability to acidify the urine as well as a lowered systemic buffer capacity and overt acidosis in null mutants. Thus, Foxi1–/– mice seem to develop dRTA due to altered cellular composition of the distal nephron epithelium, thereby denying this epithelium the proper gene expression pattern needed for maintaining adequate acid-base homeostasis.
Sandra Rodrigo Blomqvist, Hilmar Vidarsson, Sharyn Fitzgerald, Bengt R. Johansson, Anna Ollerstam, Russell Brown, A. Erik G. Persson, Göran Bergström, Sven Enerbäck
Uncontrolled hepatic glucose production contributes significantly to hyperglycemia in patients with type 2 diabetes. Hyperglucagonemia is implicated in the etiology of this condition; however, effective therapies to block glucagon signaling and thereby regulate glucose metabolism do not exist. To determine the extent to which blocking glucagon action would reverse hyperglycemia, we targeted the glucagon receptor (GCGR) in rodent models of type 2 diabetes using 2′-methoxyethyl–modified phosphorothioate-antisense oligonucleotide (ASO) inhibitors. Treatment with GCGR ASOs decreased GCGR expression, normalized blood glucose, improved glucose tolerance, and preserved insulin secretion. Importantly, in addition to decreasing expression of cAMP-regulated genes in liver and preventing glucagon-mediated hepatic glucose production, GCGR inhibition increased serum concentrations of active glucagon-like peptide-1 (GLP-1) and insulin levels in pancreatic islets. Together, these studies identify a novel mechanism whereby GCGR inhibitors reverse the diabetes phenotype by the dual action of decreasing hepatic glucose production and improving pancreatic β cell function.
Kyle W. Sloop, Julia Xiao-Chun Cao, Angela M. Siesky, Hong Yan Zhang, Diane M. Bodenmiller, Amy L. Cox, Steven J. Jacobs, Julie S. Moyers, Rebecca A. Owens, Aaron D. Showalter, Martin B. Brenner, Achim Raap, Jesper Gromada, Brian R. Berridge, David K. B. Monteith, Niels Porksen, Robert A. McKay, Brett P. Monia, Sanjay Bhanot, Lynnetta M. Watts, M. Dodson Michael
Elevated FFA concentrations have been shown to reproduce some of the metabolic abnormalities of obesity. It has been hypothesized that visceral adipose tissue lipolysis releases excess FFAs into the portal vein, exposing the liver to higher FFA concentrations. We used isotope dilution/hepatic vein catheterization techniques to examine whether intra-abdominal fat contributes a greater portion of hepatic FFA delivery in visceral obesity. Obese women (n = 24) and men (n = 20) with a range of obesity phenotypes, taken together with healthy, lean women (n = 12) and men (n = 12), were studied. Systemic, splanchnic, and leg FFA kinetics were measured. The results showed that plasma FFA concentrations were approximately 20% greater in obese men and obese women. The contribution of splanchnic lipolysis to hepatic FFA delivery ranged from less than 10% to almost 50% and increased as a function of visceral fat in women (r = 0.49, P = 0.002) and in men (r = 0.52, P = 0.002); the slope of the relationship was greater in women than in men (P < 0.05). Leg and splanchnic tissues contributed a greater portion of systemic FFA release in obese men and women than in lean men and women. We conclude that the contribution of visceral adipose tissue lipolysis to hepatic FFA delivery increases with increasing visceral fat in humans and that this effect is greater in women than in men.
Soren Nielsen, ZengKui Guo, C. Michael Johnson, Donald D. Hensrud, Michael D. Jensen
No posts were found with this tag.