Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Novel targeted deregulation of c-Myc cooperates with Bcl-XL to cause plasma cell neoplasms in mice
Wan Cheung Cheung, … , Roberto D. Polakiewicz, Siegfried Janz
Wan Cheung Cheung, … , Roberto D. Polakiewicz, Siegfried Janz
Published June 15, 2004
Citation Information: J Clin Invest. 2004;113(12):1763-1773. https://doi.org/10.1172/JCI20369.
View: Text | PDF
Article Oncology

Novel targeted deregulation of c-Myc cooperates with Bcl-XL to cause plasma cell neoplasms in mice

  • Text
  • PDF
Abstract

Deregulated expression of both Myc and Bcl-XL are consistent features of human plasma cell neoplasms (PCNs). To investigate whether targeted expression of Myc and Bcl-XL in mouse plasma cells might lead to an improved model of human PCN, we generated Myc transgenics by inserting a single-copy histidine-tagged mouse Myc gene, MycHis, into the mouse Ig heavy-chain Cα locus. We also generated Bcl-XL transgenic mice that contain a multicopy Flag-tagged mouse Bcl-xFlag transgene driven by the mouse Ig κ light-chain 3′ enhancer. Single-transgenic Bcl-XL mice remained tumor free by 380 days of age, whereas single-transgenic Myc mice developed B cell tumors infrequently (4 of 43, 9.3%). In contrast, double-transgenic Myc/Bcl-XL mice developed plasma cell tumors with short onset (135 days on average) and full penetrance (100% tumor incidence). These tumors produced monoclonal Ig, infiltrated the bone marrow, and contained elevated amounts of MycHis and Bcl-XLFlag proteins compared with the plasma cells that accumulated in large numbers in young tumor-free Myc/Bcl-XL mice. Our findings demonstrate that the enforced expression of Myc and Bcl-XL by Ig enhancers with peak activity in plasma cells generates a mouse model of human PCN that recapitulates some features of human multiple myeloma.

Authors

Wan Cheung Cheung, Joong Su Kim, Michael Linden, Liangping Peng, Brian Van Ness, Roberto D. Polakiewicz, Siegfried Janz

×

Full Text PDF | Download (984.48 KB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts