Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Technical Advance

  • 119 Articles
  • 1 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 10
  • 11
  • 12
  • Next →
Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice
Adam D. Judge, … , Kevin McClintock, Ian MacLachlan
Adam D. Judge, … , Kevin McClintock, Ian MacLachlan
Published February 23, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI37515.
View: Text | PDF

Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice

  • Text
  • PDF
Abstract

siRNAs that specifically silence the expression of cancer-related genes offer a therapeutic approach in oncology. However, it remains critical to determine the true mechanism of their therapeutic effects. Here, we describe the preclinical development of chemically modified siRNA targeting the essential cell-cycle proteins polo-like kinase 1 (PLK1) and kinesin spindle protein (KSP) in mice. siRNA formulated in stable nucleic acid lipid particles (SNALP) displayed potent antitumor efficacy in both hepatic and subcutaneous tumor models. This was correlated with target gene silencing following a single intravenous administration that was sufficient to cause extensive mitotic disruption and tumor cell apoptosis. Our siRNA formulations induced no measurable immune response, minimizing the potential for nonspecific effects. Additionally, RNAi-specific mRNA cleavage products were found in tumor cells, and their presence correlated with the duration of target mRNA silencing. Histological biomarkers confirmed that RNAi-mediated gene silencing effectively inhibited the target’s biological activity. This report supports an RNAi-mediated mechanism of action for siRNA antitumor effects, suggesting a new methodology for targeting other key genes in cancer development with siRNA-based therapeutics.

Authors

Adam D. Judge, Marjorie Robbins, Iran Tavakoli, Jasna Levi, Lina Hu, Anna Fronda, Ellen Ambegia, Kevin McClintock, Ian MacLachlan

×

Genome-wide hepatitis C virus amino acid covariance networks can predict response to antiviral therapy in humans
Rajeev Aurora, … , John E. Tavis, the Virahep-C Study Group
Rajeev Aurora, … , John E. Tavis, the Virahep-C Study Group
Published December 22, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI37085.
View: Text | PDF

Genome-wide hepatitis C virus amino acid covariance networks can predict response to antiviral therapy in humans

  • Text
  • PDF
Abstract

Hepatitis C virus (HCV) is a common RNA virus that causes hepatitis and liver cancer. Infection is treated with IFN-α and ribavirin, but this expensive and physically demanding therapy fails in half of patients. The genomic sequences of independent HCV isolates differ by approximately 10%, but the effects of this variation on the response to therapy are unknown. To address this question, we analyzed amino acid covariance within the full viral coding region of pretherapy HCV sequences from 94 participants in the Viral Resistance to Antiviral Therapy of Chronic Hepatitis C (Virahep-C) clinical study. Covarying positions were common and linked together into networks that differed by response to therapy. There were 3-fold more hydrophobic amino acid pairs in HCV from nonresponding patients, and these hydrophobic interactions were predicted to contribute to failure of therapy by stabilizing viral protein complexes. Using our analysis to detect patterns within the networks, we could predict the outcome of therapy with greater than 95% coverage and 100% accuracy, raising the possibility of a prognostic test to reduce therapeutic failures. Furthermore, the hub positions in the networks are attractive antiviral targets because of their genetic linkage with many other positions that we predict would suppress evolution of resistant variants. Finally, covariance network analysis could be applicable to any virus with sufficient genetic variation, including most human RNA viruses.

Authors

Rajeev Aurora, Maureen J. Donlin, Nathan A. Cannon, John E. Tavis

×

Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation
Virna Cortez-Retamozo, … , Ralph Weissleder, Mikael J. Pittet
Virna Cortez-Retamozo, … , Ralph Weissleder, Mikael J. Pittet
Published November 6, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI36335.
View: Text | PDF

Real-time assessment of inflammation and treatment response in a mouse model of allergic airway inflammation

  • Text
  • PDF
Abstract

Eosinophils are multifunctional leukocytes that degrade and remodel tissue extracellular matrix through production of proteolytic enzymes, release of proinflammatory factors to initiate and propagate inflammatory responses, and direct activation of mucus secretion and smooth muscle cell constriction. Thus, eosinophils are central effector cells during allergic airway inflammation and an important clinical therapeutic target. Here we describe the use of an injectable MMP-targeted optical sensor that specifically and quantitatively resolves eosinophil activity in the lungs of mice with experimental allergic airway inflammation. Through the use of real-time molecular imaging methods, we report the visualization of eosinophil responses in vivo and at different scales. Eosinophil responses were seen at single-cell resolution in conducting airways using near-infrared fluorescence fiberoptic bronchoscopy, in lung parenchyma using intravital microscopy, and in the whole body using fluorescence-mediated molecular tomography. Using these real-time imaging methods, we confirmed the immunosuppressive effects of the glucocorticoid drug dexamethasone in the mouse model of allergic airway inflammation and identified a viridin-derived prodrug that potently inhibited the accumulation and enzyme activity of eosinophils in the lungs. The combination of sensitive enzyme-targeted sensors with noninvasive molecular imaging approaches permitted evaluation of airway inflammation severity and was used as a model to rapidly screen for new drug effects. Both fluorescence-mediated tomography and fiberoptic bronchoscopy techniques have the potential to be translated into the clinic.

Authors

Virna Cortez-Retamozo, Filip K. Swirski, Peter Waterman, Hushan Yuan, Jose Luiz Figueiredo, Andita P. Newton, Rabi Upadhyay, Claudio Vinegoni, Rainer Kohler, Joseph Blois, Adam Smith, Matthias Nahrendorf, Lee Josephson, Ralph Weissleder, Mikael J. Pittet

×

Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets
Lara R. Nyman, … , David W. Piston, Alvin C. Powers
Lara R. Nyman, … , David W. Piston, Alvin C. Powers
Published October 9, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI36209.
View: Text | PDF

Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets

  • Text
  • PDF
Abstract

The pancreatic islets of Langerhans are highly vascularized micro-organs that play a key role in the regulation of blood glucose homeostasis. The specific arrangement of endocrine cell types in islets suggests a coupling between morphology and function within the islet. Here, we established a line-scanning confocal microscopy approach to examine the relationship between blood flow and islet cell type arrangement by real-time in vivo imaging of intra-islet blood flow in mice. These data were used to reconstruct the in vivo 3D architecture of the islet and time-resolved blood flow patterns throughout the islet vascular bed. The results revealed 2 predominant blood flow patterns in mouse islets: inner-to-outer, in which blood perfuses the core of β cells before the islet perimeter of non–β cells, and top-to-bottom, in which blood perfuses the islet from one side to the other regardless of cell type. Our approach included both millisecond temporal resolution and submicron spatial resolution, allowing for real-time imaging of islet blood flow within the living mouse, which has not to our knowledge been attainable by other methods.

Authors

Lara R. Nyman, K. Sam Wells, W. Steve Head, Michael McCaughey, Eric Ford, Marcela Brissova, David W. Piston, Alvin C. Powers

×

Metabolite profiling of blood from individuals undergoing planned myocardial infarction reveals early markers of myocardial injury
Gregory D. Lewis, … , Marc S. Sabatine, Robert E. Gerszten
Gregory D. Lewis, … , Marc S. Sabatine, Robert E. Gerszten
Published September 2, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI35111.
View: Text | PDF

Metabolite profiling of blood from individuals undergoing planned myocardial infarction reveals early markers of myocardial injury

  • Text
  • PDF
Abstract

Emerging metabolomic tools have created the opportunity to establish metabolic signatures of myocardial injury. We applied a mass spectrometry–based metabolite profiling platform to 36 patients undergoing alcohol septal ablation treatment for hypertrophic obstructive cardiomyopathy, a human model of planned myocardial infarction (PMI). Serial blood samples were obtained before and at various intervals after PMI, with patients undergoing elective diagnostic coronary angiography and patients with spontaneous myocardial infarction (SMI) serving as negative and positive controls, respectively. We identified changes in circulating levels of metabolites participating in pyrimidine metabolism, the tricarboxylic acid cycle and its upstream contributors, and the pentose phosphate pathway. Alterations in levels of multiple metabolites were detected as early as 10 minutes after PMI in an initial derivation group and were validated in a second, independent group of PMI patients. A PMI-derived metabolic signature consisting of aconitic acid, hypoxanthine, trimethylamine N-oxide, and threonine differentiated patients with SMI from those undergoing diagnostic coronary angiography with high accuracy, and coronary sinus sampling distinguished cardiac-derived from peripheral metabolic changes. Our results identify a role for metabolic profiling in the early detection of myocardial injury and suggest that similar approaches may be used for detection or prediction of other disease states.

Authors

Gregory D. Lewis, Ru Wei, Emerson Liu, Elaine Yang, Xu Shi, Maryann Martinovic, Laurie Farrell, Aarti Asnani, Marcoli Cyrille, Arvind Ramanathan, Oded Shaham, Gabriel Berriz, Patricia A. Lowry, Igor F. Palacios, Murat Taşan, Frederick P. Roth, Jiangyong Min, Christian Baumgartner, Hasmik Keshishian, Terri Addona, Vamsi K. Mootha, Anthony Rosenzweig, Steven A. Carr, Michael A. Fifer, Marc S. Sabatine, Robert E. Gerszten

×

A novel panel of mouse models to evaluate the role of human pregnane X receptor and constitutive androstane receptor in drug response
Nico Scheer, … , Nicole Faust, C. Roland Wolf
Nico Scheer, … , Nicole Faust, C. Roland Wolf
Published August 1, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI35483.
View: Text | PDF

A novel panel of mouse models to evaluate the role of human pregnane X receptor and constitutive androstane receptor in drug response

  • Text
  • PDF
Abstract

The pregnane X receptor (PXR) and the constitutive androstane receptor (CAR) are closely related orphan nuclear hormone receptors that play a critical role as xenobiotic sensors in mammals. Both receptors regulate the expression of genes involved in the biotransformation of chemicals in a ligand-dependent manner. As the ligand specificity of PXR and CAR have diverged between species, the prediction of in vivo PXR and CAR interactions with a drug are difficult to extrapolate from animals to humans. We report the development of what we believe are novel PXR- and CAR-humanized mice, generated using a knockin strategy, and Pxr- and Car-KO mice as well as a panel of mice including all possible combinations of these genetic alterations. The expression of human CAR and PXR was in the predicted tissues at physiological levels, and splice variants of both human receptors were expressed. The panel of mice will allow the dissection of the crosstalk between PXR and CAR in the response to different drugs. To demonstrate the utility of this panel of mice, we used the mice to show that the in vivo induction of Cyp3a11 and Cyp2b10 by phenobarbital was only mediated by CAR, although this compound is described as a PXR and CAR activator in vitro. This panel of mouse models is a useful tool to evaluate the roles of CAR and PXR in drug bioavailability, toxicity, and efficacy in humans.

Authors

Nico Scheer, Jillian Ross, Anja Rode, Branko Zevnik, Sandra Niehaves, Nicole Faust, C. Roland Wolf

×

Noninvasive diagnosis of ruptured peripheral atherosclerotic lesions and myocardial infarction by antibody profiling
Kitty B.J.M. Cleutjens, … , Peter J.E.H.M. Kitslaar, Mat J.A.P. Daemen
Kitty B.J.M. Cleutjens, … , Peter J.E.H.M. Kitslaar, Mat J.A.P. Daemen
Published July 24, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI32767.
View: Text | PDF

Noninvasive diagnosis of ruptured peripheral atherosclerotic lesions and myocardial infarction by antibody profiling

  • Text
  • PDF
Abstract

Novel biomarkers, such as circulating (auto)antibody signatures, may improve early detection and treatment of ruptured atherosclerotic lesions and accompanying cardiovascular events, such as myocardial infarction. Using a phage-display library derived from cDNAs preferentially expressed in ruptured peripheral human atherosclerotic plaques, we performed serological antigen selection to isolate displayed cDNA products specifically interacting with antibodies in sera from patients with proven ruptured peripheral atherosclerotic lesions. Two cDNA products were subsequently evaluated on a validation series of patients with peripheral atherosclerotic lesions, healthy controls, and patients with coronary artery disease at different stages. Our biomarker set was able to discriminate between patients with peripheral ruptured lesions and patients with peripheral stable plaques with 100% specificity and 76% sensitivity. Furthermore, 93% of patients with an acute myocardial infarction (AMI) tested positive for our biomarkers, whereas all patients with stable angina pectoris tested negative. Moreover, 90% of AMI patients who initially tested negative for troponin T, for which a positive result is known to indicate myocardial infarction, tested positive for our biomarkers upon hospital admission. In conclusion, antibody profiling constitutes a promising approach for noninvasive diagnosis of atherosclerotic lesions, because a positive serum response against a set of 2 cDNA products showed a strong association with the presence of ruptured peripheral atherosclerotic lesions and myocardial infarction.

Authors

Kitty B.J.M. Cleutjens, Birgit C.G. Faber, Mat Rousch, Ruben van Doorn, Tilman M. Hackeng, Cornelis Vink, Piet Geusens, Hugo ten Cate, Johannes Waltenberger, Vadim Tchaikovski, Marc Lobbes, Veerle Somers, Anneke Sijbers, Darcey Black, Peter J.E.H.M. Kitslaar, Mat J.A.P. Daemen

×

Metabolomic analysis of the cerebrospinal fluid reveals changes in phospholipase expression in the CNS of SIV-infected macaques
William R. Wikoff, … , Gary Siuzdak, Howard S. Fox
William R. Wikoff, … , Gary Siuzdak, Howard S. Fox
Published June 2, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI34138.
View: Text | PDF

Metabolomic analysis of the cerebrospinal fluid reveals changes in phospholipase expression in the CNS of SIV-infected macaques

  • Text
  • PDF
Abstract

HIV infiltrates the CNS soon after an individual has become infected with the virus, and can cause dementia and encephalitis in late-stage disease. Here, a global metabolomics approach was used to find and identify metabolites differentially regulated in the cerebrospinal fluid (CSF) of rhesus macaques with SIV-induced CNS disease, as we hypothesized that this might provide biomarkers of virus-induced CNS damage. The screening platform used a non-targeted, mass-based metabolomics approach beginning with capillary reverse phase chromatography and electrospray ionization with accurate mass determination, followed by novel, nonlinear data alignment and online database screening to identify metabolites. CSF was compared before and after viral infection. Significant changes in the metabolome specific to SIV-induced encephalitis were observed. Metabolites that were increased during infection-induced encephalitis included carnitine, acyl-carnitines, fatty acids, and phospholipid molecules. The elevation in free fatty acids and lysophospholipids correlated with increased expression of specific phospholipases in the brains of animals with encephalitis. One of these, a phospholipase A2 isoenzyme, is capable of releasing a number of the fatty acids identified. It was expressed in different areas of the brain in conjunction with glial activation, rather than linked to regions of SIV infection and inflammation, indicating widespread alterations in infected brains. The identification of specific metabolites as well as mechanisms of their increase illustrates the potential of mass-based metabolomics to address problems in CNS biochemistry and neurovirology, as well as neurodegenerative diseases.

Authors

William R. Wikoff, Gurudutt Pendyala, Gary Siuzdak, Howard S. Fox

×

Low-field paramagnetic resonance imaging of tumor oxygenation and glycolytic activity in mice
Shingo Matsumoto, … , James B. Mitchell, Murali C. Krishna
Shingo Matsumoto, … , James B. Mitchell, Murali C. Krishna
Published April 22, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI34928.
View: Text | PDF

Low-field paramagnetic resonance imaging of tumor oxygenation and glycolytic activity in mice

  • Text
  • PDF
Abstract

A priori knowledge of spatial and temporal changes in partial pressure of oxygen (oxygenation; pO2) in solid tumors, a key prognostic factor in cancer treatment outcome, could greatly improve treatment planning in radiotherapy and chemotherapy. Pulsed electron paramagnetic resonance imaging (EPRI) provides quantitative 3D maps of tissue pO2 in living objects. In this study, we implemented an EPRI set-up that could acquire pO2 maps in almost real time for 2D and in minutes for 3D. We also designed a combined EPRI and MRI system that enabled generation of pO2 maps with anatomic guidance. Using EPRI and an air/carbogen (95% O2 plus 5% CO2) breathing cycle, we visualized perfusion-limited hypoxia in murine tumors. The relationship between tumor blood perfusion and pO2 status was examined, and it was found that significant hypoxia existed even in regions that exhibited blood flow. In addition, high levels of lactate were identified even in normoxic tumor regions, suggesting the predominance of aerobic glycolysis in murine tumors. This report presents a rapid, noninvasive method to obtain quantitative maps of pO2 in tumors, reported with anatomy, with precision. In addition, this method may also be useful for studying the relationship between pO2 status and tumor-specific phenotypes such as aerobic glycolysis.

Authors

Shingo Matsumoto, Fuminori Hyodo, Sankaran Subramanian, Nallathamby Devasahayam, Jeeva Munasinghe, Emi Hyodo, Chandramouli Gadisetti, John A. Cook, James B. Mitchell, Murali C. Krishna

×

Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice
Mariacarmela Allocca, … , Jean Bennett, Alberto Auricchio
Mariacarmela Allocca, … , Jean Bennett, Alberto Auricchio
Published April 15, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI34316.
View: Text | PDF

Serotype-dependent packaging of large genes in adeno-associated viral vectors results in effective gene delivery in mice

  • Text
  • PDF
Abstract

Vectors derived from adeno-associated virus (AAV) are promising for human gene therapy, including treatment for retinal blindness. One major limitation of AAVs as vectors is that AAV cargo capacity has been considered to be restricted to 4.7 kb. Here we demonstrate that vectors with an AAV5 capsid (i.e., rAAV2/5) incorporated up to 8.9 kb of genome more efficiently than 6 other serotypes tested, independent of the efficiency of the rAAV2/5 production process. Efficient packaging of the large murine Abca4 and human MYO7A and CEP290 genes, which are mutated in common blinding diseases, was obtained, suggesting that this packaging efficiency is independent of the specific sequence packaged. Expression of proteins of the appropriate size and function was observed following transduction with rAAV2/5 carrying large genes. Intraocular administration of rAAV2/5 encoding ABCA4 resulted in protein localization to rod outer segments and significant and stable morphological and functional improvement of the retina in Abca4–/– mice. This use of rAAV2/5 may be a promising therapeutic strategy for recessive Stargardt disease, the most common form of inherited macular degeneration. The possibility of packaging large genes in AAV greatly expands the therapeutic potential of this vector system.

Authors

Mariacarmela Allocca, Monica Doria, Marco Petrillo, Pasqualina Colella, Maria Garcia-Hoyos, Daniel Gibbs, So Ra Kim, Albert Maguire, Tonia S. Rex, Umberto Di Vicino, Luisa Cutillo, Janet R. Sparrow, David S. Williams, Jean Bennett, Alberto Auricchio

×
  • ← Previous
  • 1
  • 2
  • …
  • 10
  • 11
  • 12
  • Next →
Live animal imaging in the far red
Ming Zhang and colleagues developed a far-red-absorbing reporter/probe system that can be used to image live animals and overcomes imaging limitations associated with conventional systems that use lower wavelengths of light…
Published September 8, 2015
Scientific Show StopperTechnical AdvanceOncology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts