Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets
Lara R. Nyman, … , David W. Piston, Alvin C. Powers
Lara R. Nyman, … , David W. Piston, Alvin C. Powers
Published October 9, 2008
Citation Information: J Clin Invest. 2008;118(11):3790-3797. https://doi.org/10.1172/JCI36209.
View: Text | PDF
Technical Advance Vascular biology

Real-time, multidimensional in vivo imaging used to investigate blood flow in mouse pancreatic islets

  • Text
  • PDF
Abstract

The pancreatic islets of Langerhans are highly vascularized micro-organs that play a key role in the regulation of blood glucose homeostasis. The specific arrangement of endocrine cell types in islets suggests a coupling between morphology and function within the islet. Here, we established a line-scanning confocal microscopy approach to examine the relationship between blood flow and islet cell type arrangement by real-time in vivo imaging of intra-islet blood flow in mice. These data were used to reconstruct the in vivo 3D architecture of the islet and time-resolved blood flow patterns throughout the islet vascular bed. The results revealed 2 predominant blood flow patterns in mouse islets: inner-to-outer, in which blood perfuses the core of β cells before the islet perimeter of non–β cells, and top-to-bottom, in which blood perfuses the islet from one side to the other regardless of cell type. Our approach included both millisecond temporal resolution and submicron spatial resolution, allowing for real-time imaging of islet blood flow within the living mouse, which has not to our knowledge been attainable by other methods.

Authors

Lara R. Nyman, K. Sam Wells, W. Steve Head, Michael McCaughey, Eric Ford, Marcela Brissova, David W. Piston, Alvin C. Powers

×

Figure 1

Imaging islet blood flow in vivo.

Options: View larger image (or click on image) Download as PowerPoint
Imaging islet blood flow in vivo.
(A) Schematic of in vivo imaging setup...
(A) Schematic of in vivo imaging setup shows the positioning of an anesthetized MIP-GFP mouse with exteriorized pancreas over the lens of a high-speed, line-scanning confocal microscope. After epifluorescence visual identification of a GFP-labeled islet, rhodamine dextran was injected into the ocular plexus for visualization of islet blood in vivo. (B) Single-plane image of an islet with GFP-labeled β cells (green); islet vasculature was visualized with rhodamine dextran (red) tracer injection. Note the dark areas within vessels, reflecting red blood cells that were not labeled with the rhodamine dextran. Also note that the surrounding exocrine tissue had fewer vessels than the islet. Scale bar: 100 μm.

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts