Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Stem cells

  • 122 Articles
  • 3 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 10
  • 11
  • 12
  • 13
  • Next →
Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells
Jeffrey J. Ross, … , Robert T. Tranquillo, Catherine M. Verfaillie
Jeffrey J. Ross, … , Robert T. Tranquillo, Catherine M. Verfaillie
Published July 2, 2007
Citation Information: J Clin Invest. 2007;117(7):2014-2014. https://doi.org/10.1172/JCI28184C1.
View: Text | PDF | Amended Article

Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells

  • Text
  • PDF
Abstract

Authors

Jeffrey J. Ross, Zhigang Hong, Ben Willenbring, Lepeng Zeng, Brett Isenberg, Eu Han Lee, Morayma Reyes, Susan A. Keirstead, E. Kenneth Weir, Robert T. Tranquillo, Catherine M. Verfaillie

×

Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells
Jeffrey J. Ross, … , Robert T. Tranquillo, Catherine M. Verfaillie
Jeffrey J. Ross, … , Robert T. Tranquillo, Catherine M. Verfaillie
Published December 1, 2006
Citation Information: J Clin Invest. 2006;116(12):3139-3149. https://doi.org/10.1172/JCI28184.
View: Text | PDF | Corrigendum

Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells

  • Text
  • PDF
Abstract

Smooth muscle formation and function are critical in development and postnatal life. Hence, studies aimed at better understanding SMC differentiation are of great importance. Here, we report that multipotent adult progenitor cells (MAPCs) isolated from rat, murine, porcine, and human bone marrow demonstrate the potential to differentiate into cells with an SMC-like phenotype and function. TGF-β1 alone or combined with PDGF-BB in serum-free medium induces a temporally correct expression of transcripts and proteins consistent with smooth muscle development. Furthermore, SMCs derived from MAPCs (MAPC-SMCs) demonstrated functional L-type calcium channels. MAPC-SMCs entrapped in fibrin vascular molds became circumferentially aligned and generated force in response to KCl, the L-type channel opener FPL64176, or the SMC agonists 5-HT and ET-1, and exhibited complete relaxation in response to the Rho-kinase inhibitor Y-27632. Cyclic distention (5% circumferential strain) for 3 weeks increased responses by 2- to 3-fold, consistent with what occurred in neonatal SMCs. These results provide evidence that MAPC-SMCs are phenotypically and functionally similar to neonatal SMCs and that the in vitro MAPC-SMC differentiation system may be an ideal model for the study of SMC development. Moreover, MAPC-SMCs may lend themselves to tissue engineering applications.

Authors

Jeffrey J. Ross, Zhigang Hong, Ben Willenbring, Lepeng Zeng, Brett Isenberg, Eu Han Lee, Morayma Reyes, Susan A. Keirstead, E. Kenneth Weir, Robert T. Tranquillo, Catherine M. Verfaillie

×

Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy
Matthew R. Ritter, … , Michael I. Dorrell, Martin Friedlander
Matthew R. Ritter, … , Michael I. Dorrell, Martin Friedlander
Published December 1, 2006
Citation Information: J Clin Invest. 2006;116(12):3266-3276. https://doi.org/10.1172/JCI29683.
View: Text | PDF

Myeloid progenitors differentiate into microglia and promote vascular repair in a model of ischemic retinopathy

  • Text
  • PDF
Abstract

Vision loss associated with ischemic diseases such as retinopathy of prematurity and diabetic retinopathy are often due to retinal neovascularization. While significant progress has been made in the development of compounds useful for the treatment of abnormal vascular permeability and proliferation, such therapies do not address the underlying hypoxia that stimulates the observed vascular growth. Using a model of oxygen-induced retinopathy, we demonstrate that a population of adult BM–derived myeloid progenitor cells migrated to avascular regions of the retina, differentiated into microglia, and facilitated normalization of the vasculature. Myeloid-specific hypoxia-inducible factor 1α (HIF-1α) expression was required for this function, and we also demonstrate that endogenous microglia participated in retinal vascularization. These findings suggest what we believe to be a novel therapeutic approach for the treatment of ischemic retinopathies that promotes vascular repair rather than destruction.

Authors

Matthew R. Ritter, Eyal Banin, Stacey K. Moreno, Edith Aguilar, Michael I. Dorrell, Martin Friedlander

×

Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells
Andrea Hoffmann, … , Gerhard Gross, Dan Gazit
Andrea Hoffmann, … , Gerhard Gross, Dan Gazit
Published April 3, 2006
Citation Information: J Clin Invest. 2006;116(4):940-952. https://doi.org/10.1172/JCI22689.
View: Text | PDF

Neotendon formation induced by manipulation of the Smad8 signalling pathway in mesenchymal stem cells

  • Text
  • PDF
Abstract

Tissue regeneration requires the recruitment of adult stem cells and their differentiation into mature committed cells. In this study we describe what we believe to be a novel approach for tendon regeneration based on a specific signalling molecule, Smad8, which mediates the differentiation of mesenchymal stem cells (MSCs) into tendon-like cells. A biologically active Smad8 variant was transfected into an MSC line that coexpressed the osteogenic gene bone morphogenetic protein 2 (BMP2). The engineered cells demonstrated the morphological characteristics and gene expression profile of tendon cells both in vitro and in vivo. In addition, following implantation in an Achilles tendon partial defect, the engineered cells were capable of inducing tendon regeneration demonstrated by double quantum filtered MRI. The results indicate what we believe to be a novel mechanism in which Smad8 inhibits the osteogenic pathway in MSCs known to be induced by BMP2 while promoting tendon differentiation. These findings may have considerable importance for the therapeutic replacement of tendons or ligaments and for engineering other tissues in which BMP plays a pivotal developmental role.

Authors

Andrea Hoffmann, Gadi Pelled, Gadi Turgeman, Peter Eberle, Yoram Zilberman, Hadassah Shinar, Keren Keinan-Adamsky, Andreas Winkel, Sandra Shahab, Gil Navon, Gerhard Gross, Dan Gazit

×

A homing mechanism for bone marrow–derived progenitor cell recruitment to the neovasculature
Hui Jin, … , Martin Friedlander, Judy Varner
Hui Jin, … , Martin Friedlander, Judy Varner
Published March 1, 2006
Citation Information: J Clin Invest. 2006;116(3):652-662. https://doi.org/10.1172/JCI24751.
View: Text | PDF

A homing mechanism for bone marrow–derived progenitor cell recruitment to the neovasculature

  • Text
  • PDF
Abstract

CD34+ bone marrow–derived progenitor cells contribute to tissue repair by differentiating into endothelial cells, vascular smooth muscle cells, hematopoietic cells, and possibly other cell types. However, the mechanisms by which circulating progenitor cells home to remodeling tissues remain unclear. Here we show that integrin α4β1 (VLA-4) promotes the homing of circulating progenitor cells to the α4β1 ligands VCAM and cellular fibronectin, which are expressed on actively remodeling neovasculature. Progenitor cells, which express integrin α4β1, homed to sites of active tumor neovascularization but not to normal nonimmune tissues. Antagonists of integrin α4β1, but not other integrins, blocked the adhesion of these cells to endothelia in vitro and in vivo as well as their homing to neovasculature and outgrowth into differentiated cell types. These studies describe an adhesion event that facilitates the homing of progenitor cells to the neovasculature.

Authors

Hui Jin, Aparna Aiyer, Jingmei Su, Per Borgstrom, Dwayne Stupack, Martin Friedlander, Judy Varner

×

Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells
Jeremy S. Duffield, … , Takaharu Ichimura, Joseph V. Bonventre
Jeremy S. Duffield, … , Takaharu Ichimura, Joseph V. Bonventre
Published July 1, 2005
Citation Information: J Clin Invest. 2005;115(7):1743-1755. https://doi.org/10.1172/JCI22593.
View: Text | PDF

Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells

  • Text
  • PDF
Abstract

Ischemia causes kidney tubular cell damage and abnormal renal function. The kidney is capable of morphological restoration of tubules and recovery of function. Recently, it has been suggested that cells repopulating the ischemically injured tubule derive from bone marrow stem cells. We studied kidney repair in chimeric mice expressing GFP or bacterial β-gal or harboring the male Y chromosome exclusively in bone marrow-derived cells. In GFP chimeras, some interstitial cells but not tubular cells expressed GFP after ischemic injury. More than 99% of those GFP interstitial cells were leukocytes. In female mice with male bone marrow, occasional tubular cells (0.06%) appeared to be positive for the Y chromosome, but deconvolution microscopy revealed these to be artifactual. In β-gal chimeras, some tubular cells also appeared to express β-gal as assessed by X-gal staining, but following suppression of endogenous (mammalian) β-gal, no tubular cells could be found that stained with X-gal after ischemic injury. Whereas there was an absence of bone marrow–derived tubular cells, many tubular cells expressed proliferating cell nuclear antigen, which is reflective of a high proliferative rate of endogenous surviving tubular cells. Upon i.v. injection of bone marrow mesenchymal stromal cells, postischemic functional renal impairment was reduced, but there was no evidence of differentiation of these cells into tubular cells of the kidney. Thus, our data indicate that bone marrow–derived cells do not make a significant contribution to the restoration of epithelial integrity after an ischemic insult. It is likely that intrinsic tubular cell proliferation accounts for functionally significant replenishment of the tubular epithelium after ischemia.

Authors

Jeremy S. Duffield, Kwon Moo Park, Li-Li Hsiao, Vicki R. Kelley, David T. Scadden, Takaharu Ichimura, Joseph V. Bonventre

×

Intrarenal cells, not bone marrow–derived cells, are the major source for regeneration in postischemic kidney
Fangming Lin, … , Ashley Moran, Peter Igarashi
Fangming Lin, … , Ashley Moran, Peter Igarashi
Published July 1, 2005
Citation Information: J Clin Invest. 2005;115(7):1756-1764. https://doi.org/10.1172/JCI23015.
View: Text | PDF

Intrarenal cells, not bone marrow–derived cells, are the major source for regeneration in postischemic kidney

  • Text
  • PDF
Abstract

Ischemic injury to the kidney produces acute tubular necrosis and apoptosis followed by tubular regeneration and recovery of renal function. Although mitotic cells are present in the tubules of postischemic kidneys, the origins of the proliferating cells are not known. Bone marrow cells (BMCs) can differentiate across lineages to repair injured organs, including the kidney. However, the relative contribution of intrarenal cells and extrarenal cells to kidney regeneration is not clear. We produced transgenic mice that expressed enhanced GFP (EGFP) specifically and permanently in mature renal tubular epithelial cells. Following ischemia/reperfusion injury (IRI), EGFP-positive cells showed incorporation of BrdU and expression of vimentin, which provides direct evidence that the cells composing regenerating tubules are derived from renal tubular epithelial cells. In BMC-transplanted mice, 89% of proliferating epithelial cells originated from host cells, and 11% originated from donor BMCs. Twenty-eight days after IRI, the kidneys contained 8% donor-derived cells, of which 8.4% were epithelial cells, 10.6% were glomerular cells, and 81% were interstitial cells. No renal functional improvement was observed in mice that were transplanted with exogenous BMCs. These results show that intrarenal cells are the main source of renal repair, and a single injection of BMCs does not make a significant contribution to renal functional or structural recovery.

Authors

Fangming Lin, Ashley Moran, Peter Igarashi

×

Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model
Yasushi Takagi, … , Yoshiki Sasai, Nobuo Hashimoto
Yasushi Takagi, … , Yoshiki Sasai, Nobuo Hashimoto
Published January 3, 2005
Citation Information: J Clin Invest. 2005;115(1):102-109. https://doi.org/10.1172/JCI21137.
View: Text | PDF

Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model

  • Text
  • PDF
Abstract

Parkinson disease (PD) is a neurodegenerative disorder characterized by loss of midbrain dopaminergic (DA) neurons. ES cells are currently the most promising donor cell source for cell-replacement therapy in PD. We previously described a strong neuralizing activity present on the surface of stromal cells, named stromal cell–derived inducing activity (SDIA). In this study, we generated neurospheres composed of neural progenitors from monkey ES cells, which are capable of producing large numbers of DA neurons. We demonstrated that FGF20, preferentially expressed in the substantia nigra, acts synergistically with FGF2 to increase the number of DA neurons in ES cell–derived neurospheres. We also analyzed the effect of transplantation of DA neurons generated from monkey ES cells into 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine–treated (MPTP-treated) monkeys, a primate model for PD. Behavioral studies and functional imaging revealed that the transplanted cells functioned as DA neurons and attenuated MPTP-induced neurological symptoms.

Authors

Yasushi Takagi, Jun Takahashi, Hidemoto Saiki, Asuka Morizane, Takuya Hayashi, Yo Kishi, Hitoshi Fukuda, Yo Okamoto, Masaomi Koyanagi, Makoto Ideguchi, Hideki Hayashi, Takayuki Imazato, Hiroshi Kawasaki, Hirofumi Suemori, Shigeki Omachi, Hidehiko Iida, Nobuyuki Itoh, Norio Nakatsuji, Yoshiki Sasai, Nobuo Hashimoto

×

Atypical PKC-ζ regulates SDF-1–mediated migration and development of human CD34+ progenitor cells
Isabelle Petit, … , Ronen Alon, Tsvee Lapidot
Isabelle Petit, … , Ronen Alon, Tsvee Lapidot
Published January 3, 2005
Citation Information: J Clin Invest. 2005;115(1):168-176. https://doi.org/10.1172/JCI21773.
View: Text | PDF

Atypical PKC-ζ regulates SDF-1–mediated migration and development of human CD34+ progenitor cells

  • Text
  • PDF
Abstract

The chemokine stromal cell–derived factor–1 (SDF-1) and its receptor, CXCR4, play a major role in migration, retention, and development of hematopoietic progenitors in the bone marrow. We report the direct involvement of atypical PKC-ζ in SDF-1 signaling in immature human CD34+-enriched cells and in leukemic pre-B acute lymphocytic leukemia (ALL) G2 cells. Chemotaxis, cell polarization, and adhesion of CD34+ cells to bone marrow stromal cells were found to be PKC-ζ dependent. Overexpression of PKC-ζ in G2 and U937 cells led to increased directional motility to SDF-1. Interestingly, impaired SDF-1–induced migration of the pre-B ALL cell line B1 correlated with reduced PKC-ζ expression. SDF-1 triggered PKC-ζ phosphorylation, translocation to the plasma membrane, and kinase activity. Furthermore we identified PI3K as an activator of PKC-ζ, and Pyk-2 and ERK1/2 as downstream targets of PKC-ζ. SDF-1–induced proliferation and MMP-9 secretion also required PKC-ζ activation. Finally, we showed that in vivo engraftment, but not homing, of human CD34+-enriched cells to the bone marrow of NOD/SCID mice was PKC-ζ dependent and that injection of mice with inhibitory PKC-ζ pseudosubstrate peptides resulted in mobilization of murine progenitors. Our results demonstrate a central role for PKC-ζ in SDF-1–dependent regulation of hematopoietic stem and progenitor cell motility and development.

Authors

Isabelle Petit, Polina Goichberg, Asaf Spiegel, Amnon Peled, Chaya Brodie, Rony Seger, Arnon Nagler, Ronen Alon, Tsvee Lapidot

×

SDF-1 is both necessary and sufficient to promote proliferative retinopathy
Jason M. Butler, … , Maria B. Grant, Edward W. Scott
Jason M. Butler, … , Maria B. Grant, Edward W. Scott
Published January 3, 2005
Citation Information: J Clin Invest. 2005;115(1):86-93. https://doi.org/10.1172/JCI22869.
View: Text | PDF

SDF-1 is both necessary and sufficient to promote proliferative retinopathy

  • Text
  • PDF
Abstract

Diabetic retinopathy is the leading cause of blindness in working-age adults. It is caused by oxygen starvation in the retina inducing aberrant formation of blood vessels that destroy retinal architecture. In humans, vitreal stromal cell–derived factor–1 (SDF-1) concentration increases as proliferative diabetic retinopathy progresses. Treatment of patients with triamcinolone decreases SDF-1 levels in the vitreous, with marked disease improvement. SDF-1 induces human retinal endothelial cells to increase expression of VCAM-1, a receptor for very late antigen–4 found on many hematopoietic progenitors, and reduce tight cellular junctions by reducing occludin expression. Both changes would serve to recruit hematopoietic and endothelial progenitor cells along an SDF-1 gradient. We have shown, using a murine model of proliferative adult retinopathy, that the majority of new vessels formed in response to oxygen starvation originate from hematopoietic stem cell–derived endothelial progenitor cells. We now show that the levels of SDF-1 found in patients with proliferative retinopathy induce retinopathy in our murine model. Intravitreal injection of blocking antibodies to SDF-1 prevented retinal neovascularization in our murine model, even in the presence of exogenous VEGF. Together, these data demonstrate that SDF-1 plays a major role in proliferative retinopathy and may be an ideal target for the prevention of proliferative retinopathy.

Authors

Jason M. Butler, Steven M. Guthrie, Mehmet Koc, Aqeela Afzal, Sergio Caballero, H. Logan Brooks, Robert N. Mames, Mark S. Segal, Maria B. Grant, Edward W. Scott

×
  • ← Previous
  • 1
  • 2
  • …
  • 10
  • 11
  • 12
  • 13
  • Next →
Transcriptional dysfunction in Beckwith-Wiedemann syndrome
Jian Chen and colleagues present evidence that dysfunctional TGF-β/β2SP/CTFC signaling underlies spontaneous tumor development in Beckwith-Wiedemann syndrome…
Published January 19, 2016
Scientific Show StopperStem cells

Repairing injured tendons with endogenous stem cells
Chang Lee and colleagues harness endogenous stem/progenitor cells to enhance tendon repair in rats…
Published June 8, 2015
Scientific Show StopperStem cells

Deriving hypothalamic-like neurons
Liheng Wang and colleagues reveal that hypothalamic-like neurons can be derived from human pluripotent stem cells….
Published January 2, 2015
Scientific Show StopperStem cells
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts