Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Inflammation

  • 307 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 30
  • 31
  • Next →
Activin A activation of Smad3 mitigates innate inflammation in mouse models of psoriasis and sepsis
Thierry Gauthier, … , Gloria H. Su, WanJun Chen
Thierry Gauthier, … , Gloria H. Su, WanJun Chen
Published March 11, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI187063.
View: Text | PDF

Activin A activation of Smad3 mitigates innate inflammation in mouse models of psoriasis and sepsis

  • Text
  • PDF
Abstract

Phosphorylation of Smad3 is a critical mediator of TGF-β signaling, which plays an important role in regulating innate immune responses. However, whether Smad3 activation can be regulated in innate immune cells in TGF-β-independent contexts remains poorly understood. Here, we show that Smad3 is activated through the phosphorylation of its C-terminal residues (pSmad3C) in murine and human macrophages in response to bacterial and viral ligands, which is mediated by Activin A in a TGF-β independent manner. Specifically, infectious ligands, such as LPS, induced secretion of Activin A through the transcription factor STAT5 in macrophages, and Activin A signaling in turn activated pSmad3C. This Activin A-Smad3 axis controlled the mitochondrial ATP production and ATP conversion into adenosine by CD73 in macrophages, enforcing an anti-inflammatory mechanism. Consequently, mice with a deletion of Activin A receptor 1b specifically in macrophages (Acvr1bf/f-Lyz2cre) succumbed more to sepsis due to uncontrolled inflammation and exhibited exacerbated skin disease in a mouse model of imiquimod-induced psoriasis. Thus, we have revealed a previously unrecognized natural brake to inflammation in macrophages that occurs through the activation of Smad3 in an Activin A-dependent manner.

Authors

Thierry Gauthier, Yun-Ji Lim, Wenwen Jin, Na Liu, Liliana C. Patiño, Weiwei Chen, James Warren, Daniel Martin, Robert J. Morell, Gabriela S. Dveksler, Gloria H. Su, WanJun Chen

×

Acute kidney injury triggers hypoxemia by lung intravascular neutrophil retention that reduces capillary blood flow
Yohei Komaru, … , Daniel Kreisel, Andreas Herrlich
Yohei Komaru, … , Daniel Kreisel, Andreas Herrlich
Published March 6, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI186705.
View: Text | PDF

Acute kidney injury triggers hypoxemia by lung intravascular neutrophil retention that reduces capillary blood flow

  • Text
  • PDF
Abstract

Sterile acute kidney injury (AKI) is common in the clinic and frequently associated with unexplained hypoxemia that does not improve with dialysis. AKI induces remote lung inflammation with neutrophil recruitment in mice and humans, but which cellular cues establish neutrophilic inflammation and how it contributes to hypoxemia is not known. Here we report that AKI induces rapid intravascular neutrophil retention in lung alveolar capillaries without extravasation into tissue or alveoli, causing hypoxemia by reducing lung capillary blood flow in the absence of substantial lung interstitial or alveolar edema. In contrast to direct ischemic lung injury, lung neutrophil recruitment during remote lung inflammation did not require cues from intravascular non-classical monocytes or tissue-resident alveolar macrophages. Instead, lung neutrophil retention depended on neutrophil chemoattractant CXCL2 released by activated classical monocytes. Comparative single-cell RNA-sequencing analysis of direct and remote lung inflammation revealed that alveolar macrophages are highly activated and produce CXCL2 only in direct lung inflammation. Establishing a CXCL2 gradient into the alveolus by intratracheal CXCL2 administration during AKI-induced remote lung inflammation enabled neutrophils to extravasate. We thus discovered important differences in lung neutrophil recruitment in direct versus remote lung inflammation and identified lung capillary neutrophil retention that negatively affects oxygenation by causing a ventilation-perfusion mismatch as a driver of AKI-induced hypoxemia.

Authors

Yohei Komaru, Liang Ning, Carine Lama, Anusha Suresh, Eirini Kefaloyianni, Mark J. Miller, Shinichi Kawana, Hailey M. Shepherd, Wenjun Li, Daniel Kreisel, Andreas Herrlich

×

Acetylsalicylic acid aggravates anaphylaxis in a PGE2-dependent manner
Philipp Globig, … , Magda Babina, Margitta Worm
Philipp Globig, … , Magda Babina, Margitta Worm
Published March 3, 2025
Citation Information: J Clin Invest. 2025;135(5):e175397. https://doi.org/10.1172/JCI175397.
View: Text | PDF

Acetylsalicylic acid aggravates anaphylaxis in a PGE2-dependent manner

  • Text
  • PDF
Abstract

Acetylsalicylic acid (ASA) can exert proanaphylactic effects, but the extent of this phenomenon and its underlying mechanisms are undefined. Yet, low homeostatic prostaglandin E2 (PGE2) levels have been associated with anaphylaxis. In this study, we investigated whether the proanaphylactic effect of ASA is PGE2 dependent. We assessed the effect of ASA in experimental anaphylaxis models, analyzed a large dataset of patients with anaphylaxis, and performed titrated allergen challenges in ASA-treated allergic individuals. Registry data indicated an increased risk for severe anaphylaxis in patients with ASA comedication. ASA pretreatment aggravated allergen-dependent anaphylaxis in mice, whereas histamine-induced anaphylaxis remained unaffected. Exacerbation was due to reduced PGE2, as its stabilization or the use of prostanoid E receptor (EP) agonists reversed the proanaphylactic effects of ASA. EP2-, EP3-, and EP4 receptor–deficient mice revealed that each receptor individually contributed to ASA susceptibility. In patients with allergy, prior ASA intake increased skin responsiveness to allergen but not to histamine. Conversely, the responses of basophils to ex vivo FcεRI aggregation remained unaltered, indicating that ASA operated by enhancing the stimulability of mast cells in a PGE2-dependent manner. Collectively, our data reveal a central role of the PGE2 network in ASA-aggravated anaphylaxis. EP receptors could be potential targets to prevent or alter the outcome of anaphylaxis.

Authors

Philipp Globig, Payam Morakabati, Veronika Höfer, Diana M. Willmes, Magda Babina, Margitta Worm

×

Cathepsin K cleavage of Angiopoietin-2 creates detrimental Tie2 antagonist fragments in sepsis
Takashi Suzuki, … , Sascha David, Samir M. Parikh
Takashi Suzuki, … , Sascha David, Samir M. Parikh
Published March 3, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI174135.
View: Text | PDF

Cathepsin K cleavage of Angiopoietin-2 creates detrimental Tie2 antagonist fragments in sepsis

  • Text
  • PDF
Abstract

Elevated Angiopoietin-2 is associated with diverse inflammatory conditions including sepsis, a leading global cause of mortality. During inflammation, Angiopoietin-2 antagonizes the endothelium-enriched receptor Tie2 to destabilize the vasculature. In other contexts, Angiopoietin-2 stimulates Tie2. The basis for context-dependent antagonism remains incompletely understood. Here we show that inflammation-induced proteolytic cleavage of Angiopoietin-2 converts this ligand from Tie2 agonist to antagonist. Conditioned media from stimulated macrophages induced endothelial Angiopoietin-2 secretion. Unexpectedly, this was associated with reduction of the 75 kDa full-length protein and appearance of new 25 and 50 kDa C-terminal fragments. Peptide sequencing proposed cathepsin K as a candidate protease. Cathepsin K was necessary and sufficient to cleave Angiopoietin-2. Recombinant 25 and 50 kDa Angiopoietin-2 fragments (cANGPT225, cANGPT250) bound and antagonized Tie2. Cathepsin K inhibition with the Phase-3 small molecule inhibitor odanacatib improved survival in distinct murine sepsis models. Full-length Angiopoietin-2 enhanced survival in endotoxemic mice administered odanacatib and, conversely, increased mortality in the drug’s absence. Odanacatib’s benefit was reversed by heterologous cANGPT225. Septic humans accumulated circulating Angiopoietin-2 fragments, which were associated with adverse outcomes. These results identify cathepsin K as a candidate marker of sepsis and a proteolytic mechanism for the conversion of Angiopoietin-2 from Tie2 agonist to antagonist with therapeutic implications for inflammatory conditions associated with Angiopoietin-2 induction.

Authors

Takashi Suzuki, Erik Loyde, Sara Chen, Valerie Etzrodt, Temitayo O. Idowu, Amanda J. Clark, Marie Christelle Saade, Brenda Mendoza Flores, Shulin Lu, Gabriel Birrane, Vamsidhara Vemireddy, Benjamin Seeliger, Sascha David, Samir M. Parikh

×

The role of TREM2 in sepsis. Reply.
Siqi Ming, … , Xi Huang, Yongjian Wu
Siqi Ming, … , Xi Huang, Yongjian Wu
Published February 17, 2025
Citation Information: J Clin Invest. 2025;135(4):e189219. https://doi.org/10.1172/JCI189219.
View: Text | PDF

The role of TREM2 in sepsis. Reply.

  • Text
  • PDF
Abstract

Authors

Siqi Ming, Xingyu Li, Jingxian Shu, Xi Huang, Yongjian Wu

×

RNase L represses hair follicle regeneration through altered innate immune signaling
Charles S. Kirby, … , Robert H. Silverman, Luis A. Garza
Charles S. Kirby, … , Robert H. Silverman, Luis A. Garza
Published February 4, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI172595.
View: Text | PDF

RNase L represses hair follicle regeneration through altered innate immune signaling

  • Text
  • PDF
Abstract

Mammalian injury responses are predominantly characterized by fibrosis and scarring rather than functional regeneration. This limited regenerative capacity in mammals could reflect a loss of pro-regeneration programs or active suppression by genes functioning akin to tumor suppressors. To uncover programs governing regeneration in mammals, we screened transcripts in human subjects following laser rejuvenation treatment and compared them to mice with enhanced Wound Induced Hair Neogenesis (WIHN), a rare example of mammalian organogenesis. We found that Rnasel-/- mice exhibit an increased regenerative capacity, with elevated WIHN through enhanced IL-36α. Consistent with RNase L’s known role to stimulate caspase-1, we found that pharmacologic inhibition of caspases promoted regeneration in an IL-36 dependent manner in multiple epithelial tissues. We identified a negative feedback loop, where RNase L activated caspase-1 restrains the pro-regenerative dsRNA-TLR3 signaling cascade through the cleavage of toll-like adaptor protein TRIF. Through integrated single-cell RNA sequencing and spatial transcriptomic profiling, we confirmed Oas & Il36 genes to be highly expressed at the site of wounding and are elevated in Rnasel-/- mice wounds. This work suggests that RNase L functions as a regeneration repressor gene, in a functional tradeoff that tempers immune hyper-activation during viral infection at the cost of inhibiting regeneration.

Authors

Charles S. Kirby, Nasif Islam, Eric Wier, Martin P. Alphonse, Evan Sweren, Gaofeng Wang, Haiyun Liu, Dongwon Kim, Ang Li, Sam S. Lee, Andrew M. Overmiller, Yingchao Xue, Sashank Reddy, Nathan K. Archer, Lloyd S. Miller, Jianshi Yu, Weiliang Huang, Jace W. Jones, Sooah Kim, Maureen A. Kane, Robert H. Silverman, Luis A. Garza

×

Lactobacillus rhamnosus GG induces STING-dependent IL-10 in intestinal monocytes and alleviates inflammatory colitis in mice
Wei Si, … , Hongwei Liu, Liangliang Wang
Wei Si, … , Hongwei Liu, Liangliang Wang
Published February 3, 2025
Citation Information: J Clin Invest. 2025;135(3):e174910. https://doi.org/10.1172/JCI174910.
View: Text | PDF

Lactobacillus rhamnosus GG induces STING-dependent IL-10 in intestinal monocytes and alleviates inflammatory colitis in mice

  • Text
  • PDF
Abstract

Preclinical and clinical observations indicate that the probiotic Lactobacillus rhamnosus GG (LGG) can modulate colonic inflammation. However, the underlying mechanisms have not been explored in depth. Here, we demonstrate that oral administration of live LGG alleviated inflammatory colitis by increasing IL-10 expression in intestinal Ly6C+ monocytes. Mechanistically, LGG induced IL-10 production via the stimulator of IFN genes (STING)/TBK1/NF-κB (RELA) signaling pathway in intestinal Ly6C+ monocytes, enhancing their immune-suppressive function. Elevated IL-10 subsequently activated IL-10 signaling in Ly6C+ monocytes, resulting in an IL-10–based autocrine regulatory loop and inhibition of proinflammatory cytokine production. Furthermore, LGG shifted the gut microbial community and its metabolic functions, leading to intestinal immune responses against colitis. Fecal microbiota transplantation from LGG-colonized mice alleviated immune checkpoint blockade–associated colitis. Our findings highlight the importance of STING signaling in IL-10–dependent antiinflammatory immunity and establish an empirical basis for developing oral administration of live LGG as an efficient and safe therapeutic strategy against inflammatory colitis.

Authors

Wei Si, Xin Zhao, Ruitong Li, Yaopeng Li, Cui Ma, Xiaohan Zhao, Jason Bugno, Yuchang Qin, Junmin Zhang, Hongwei Liu, Liangliang Wang

×

Monocytes and interstitial macrophages contribute to hypoxic pulmonary hypertension
Rahul Kumar, … , Qadar Pasha, Brian B. Graham
Rahul Kumar, … , Qadar Pasha, Brian B. Graham
Published January 30, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI176865.
View: Text | PDF

Monocytes and interstitial macrophages contribute to hypoxic pulmonary hypertension

  • Text
  • PDF
Abstract

Hypoxia is a major cause of pulmonary hypertension (PH) worldwide, and it is likely that interstitial pulmonary macrophages contribute to this vascular pathology. We observed in hypoxia-exposed mice an increase in resident interstitial macrophages, which expanded through proliferation and expressed the monocyte recruitment ligand CCL2. We also observed an increase in CCR2+ macrophages through recruitment, which express the protein thrombospondin-1 that functionally activates TGF-beta to cause vascular disease. Blockade of monocyte recruitment with either CCL2 neutralizing antibody treatment or CCR2 deficiency in the bone marrow compartment suppressed hypoxic PH. These data were supported by analysis of plasma samples from humans who travelled from low (225m) to high (3500m) elevation, revealing an increase in thrombospondin-1 and TGF-beta expression following ascent, which was blocked by dexamethasone prophylaxis. In the hypoxic mouse model, dexamethasone prophylaxis recapitulated these findings by mechanistically suppressing CCL2 expression and CCR2+ monocyte recruitment. These data suggest a pathologic cross-talk between two discrete interstitial macrophage populations, which can be therapeutically targeted.

Authors

Rahul Kumar, Kevin Nolan, Biruk Kassa, Neha Chanana, Tsering Palmo, Kavita Sharma, Kanika Singh, Claudia Mickael, Dara Fonseca Balladares, Julia Nilsson, Amit Prabhakar, Aastha Mishra, Michael H. Lee, Linda Sanders, Sushil Kumar, Ari B. Molofsky, Kurt R. Stenmark, Dean Sheppard, Rubin M. Tuder, Mohit D. Gupta, Tashi Thinlas, Qadar Pasha, Brian B. Graham

×

Inhibition of aortic CX3CR1+ macrophages mitigates thoracic aortic aneurysm progression in Marfan syndrome in mice
Jiaqi Huang, … , Wei Kong, Yi Fu
Jiaqi Huang, … , Wei Kong, Yi Fu
Published January 16, 2025
Citation Information: J Clin Invest. 2025;135(2):e178198. https://doi.org/10.1172/JCI178198.
View: Text | PDF

Inhibition of aortic CX3CR1+ macrophages mitigates thoracic aortic aneurysm progression in Marfan syndrome in mice

  • Text
  • PDF
Abstract

The pathogenesis of thoracic aortic aneurysm (TAA) in Marfan syndrome (MFS) is generally attributed to vascular smooth muscle cell (VSMC) pathologies. However, the role of immune cell–mediated inflammation remains elusive. Single-cell RNA sequencing identified a subset of CX3CR1+ macrophages mainly located in the intima in the aortic roots and ascending aortas of Fbn1C1041G/+ mice, further validated in MFS patients. Specific elimination of CX3CR1+ cells by diphtheria toxin in Cx3cr1-CreERT2iDTRF/+Fbn1C1041G/+ mice efficiently ameliorated TAA progression. Administering the monoclonal antibodies to respectively neutralize TNF-α and IGF1 produced by CX3CR1+ cells from MFS patients greatly suppressed the cocultured MFS patient–specific induced pluripotent stem cell–derived VSMC inflammation. BM transplantation and parabiosis revealed that CX3CR1+ macrophages are mainly originated from BM-derived monocytes. Targeting TNF-α and IGF1 in CX3CR1+ macrophages via shRNA lentivirus transduction in BM cells efficiently suppressed TAA development in BM-transplanted Fbn1C1041G/+ mice. Application of the CCR2 antagonist RS504393 to inhibit monocyte infiltration markedly reduced the accumulation of CX3CR1+ macrophages and subsequently alleviated TAA progression in Fbn1C1041G/+ mice. In summary, CX3CR1+ macrophages mainly located in aortic intima mediate TAA formation by paracrinally causing VSMC inflammation, and targeting them offers a potential antiinflammatory therapeutic strategy for MFS-related TAA.

Authors

Jiaqi Huang, Hao Liu, Zhujiang Liu, Zhenting Wang, Hanshi Xu, Zhuofan Li, Shan Huang, Xueyuan Yang, Yicong Shen, Fang Yu, Yulin Li, Junming Zhu, Wei Li, Li Wang, Wei Kong, Yi Fu

×

FOXO1 pathway activation by VISTA immune checkpoint restrains pulmonary ILC2 functions
Mohammad Hossein Kazemi, … , Kei Sakano, Omid Akbari
Mohammad Hossein Kazemi, … , Kei Sakano, Omid Akbari
Published January 2, 2025
Citation Information: J Clin Invest. 2025. https://doi.org/10.1172/JCI184932.
View: Text | PDF

FOXO1 pathway activation by VISTA immune checkpoint restrains pulmonary ILC2 functions

  • Text
  • PDF
Abstract

Type-2 innate lymphoid cells (ILC2s) play a pivotal role in the development of airway hyperreactivity (AHR). However, the regulatory mechanisms governing ILC2 function remain inadequately explored. This study uncovers V-domain Ig suppressor of T cell activation (VISTA) as an inhibitory immune checkpoint crucial for modulating ILC2-driven lung inflammation. VISTA is upregulated in activated pulmonary ILC2s and plays a key role in regulating lung inflammation, as VISTA-deficient ILC2s demonstrate increased proliferation and function, resulting in elevated type-2 cytokine production and exacerbation of AHR. Mechanistically, VISTA stimulation activates Forkhead box O1 (FOXO1), leading to modulation of ILC2 proliferation and function. The suppressive effects of FOXO1 on ILC2 effector function were confirmed using FOXO1 inhibitors and activators. Moreover, VISTA-deficient ILC2s exhibit enhanced fatty acid oxidation and oxidative phosphorylation to meet their high energy demands. Therapeutically, VISTA agonist treatment reduces ILC2 function both ex vivo and in vivo, significantly alleviating ILC2-driven AHR. Our murine findings were validated in human ILC2s, where a VISTA agonist reduces their function ex vivo and in a humanized mouse model of ILC2-driven AHR. Our studies unravel VISTA as an immune checkpoint for ILC2 regulation via the FOXO1 pathway, presenting potential therapeutic strategies for allergic asthma by modulating ILC2 responses.

Authors

Mohammad Hossein Kazemi, Zahra Momeni-Varposhti, Xin Li, Benjamin P. Hurrell, Yoshihiro Sakano, Stephen Shen, Pedram Shafiei-Jahani, Kei Sakano, Omid Akbari

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 30
  • 31
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts