Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Inflammation

  • 303 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 27
  • 28
  • 29
  • 30
  • 31
  • Next →
Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis
Bárbara González-Terán, … , Roger J. Davis, Guadalupe Sabio
Bárbara González-Terán, … , Roger J. Davis, Guadalupe Sabio
Published December 3, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI65124.
View: Text | PDF | Corrigendum

Eukaryotic elongation factor 2 controls TNF-α translation in LPS-induced hepatitis

  • Text
  • PDF
Abstract

Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-α. TNF-α is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNF-α expression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38γ/δ MAPK proteins is required for the elongation of nascent TNF-α protein in macrophages. The MKK3/6-p38γ/δ pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-α elongation. These results identify a new signaling pathway that regulates TNF-α production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-α production is involved.

Authors

Bárbara González-Terán, José R. Cortés, Elisa Manieri, Nuria Matesanz, Ángeles Verdugo, María E. Rodríguez, Águeda González-Rodríguez, Ángela Valverde, Pilar Martín, Roger J. Davis, Guadalupe Sabio

×

Integrin α9β1 in airway smooth muscle suppresses exaggerated airway narrowing
Chun Chen, … , Xiaozhu Huang, Dean Sheppard
Chun Chen, … , Xiaozhu Huang, Dean Sheppard
Published July 9, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI60387.
View: Text | PDF

Integrin α9β1 in airway smooth muscle suppresses exaggerated airway narrowing

  • Text
  • PDF
Abstract

Exaggerated contraction of airway smooth muscle is the major cause of symptoms in asthma, but the mechanisms that prevent exaggerated contraction are incompletely understood. Here, we showed that integrin α9β1 on airway smooth muscle localizes the polyamine catabolizing enzyme spermidine/spermine N1-acetyltransferase (SSAT) in close proximity to the lipid kinase PIP5K1γ. As PIP5K1γ is the major source of PIP2 in airway smooth muscle and its activity is regulated by higher-order polyamines, this interaction inhibited IP3-dependent airway smooth muscle contraction. Mice lacking integrin α9β1 in smooth muscle had increased airway responsiveness in vivo, and loss or inhibition of integrin α9β1 increased in vitro airway narrowing and airway smooth muscle contraction in murine and human airways. Contraction was enhanced in control airways by the higher-order polyamine spermine or by cell-permeable PIP2, but these interventions had no effect on airways lacking integrin α9β1 or treated with integrin α9β1–blocking antibodies. Enhancement of SSAT activity or knockdown of PIP5K1γ inhibited airway contraction, but only in the presence of functional integrin α9β1. Therefore, integrin α9β1 appears to serve as a brake on airway smooth muscle contraction by recruiting SSAT, which facilitates local catabolism of polyamines and thereby inhibits PIP5K1γ. Targeting key components of this pathway could thus lead to new treatment strategies for asthma.

Authors

Chun Chen, Makoto Kudo, Florentine Rutaganira, Hiromi Takano, Candace Lee, Amha Atakilit, Kathryn S. Robinett, Toshimitsu Uede, Paul J. Wolters, Kevan M. Shokat, Xiaozhu Huang, Dean Sheppard

×

The αvβ6 integrin modulates airway hyperresponsiveness in mice by regulating intraepithelial mast cells
Kotaro Sugimoto, … , Xiaozhu Huang, Dean Sheppard
Kotaro Sugimoto, … , Xiaozhu Huang, Dean Sheppard
Published January 9, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI58815.
View: Text | PDF

The αvβ6 integrin modulates airway hyperresponsiveness in mice by regulating intraepithelial mast cells

  • Text
  • PDF
Abstract

Allergic asthma is the most common form of asthma, affecting more than 10 million Americans. Although it is clear that mast cells have a key role in the pathogenesis of allergic asthma, the mechanisms by which they regulate airway narrowing in vivo remain to be elucidated. Here we report that mice lacking αvβ6 integrin are protected from exaggerated airway narrowing in a model of allergic asthma. Expression microarrays of the airway epithelium revealed mast cell proteases among the most prominent differentially expressed genes, with expression of mouse mast cell protease 1 (mMCP-1) induced by allergen challenge in WT mice and expression of mMCP-4, -5, and -6 increased at baseline in β6-deficient mice. These findings were most likely explained by loss of TGF-β activation, since the epithelial integrin αvβ6 is a critical activator of latent TGF-β, and in vitro–differentiated mast cells showed TGF-β–dependent expression of mMCP-1 and suppression of mMCP-4 and -6. In vitro, mMCP-1 increased contractility of murine tracheal rings, an effect that depended on intact airway epithelium, whereas mMCP-4 inhibited IL-13–induced epithelial-independent enhancement of contractility. These results suggest that intraepithelial activation of TGF-β by the αvβ6 integrin regulates airway responsiveness by modulating mast cell protease expression and that these proteases and their proteolytic substrates could be novel targets for improved treatment of allergic asthma.

Authors

Kotaro Sugimoto, Makoto Kudo, Aparna Sundaram, Xin Ren, Katherine Huang, Xin Bernstein, Yanli Wang, Wilfred W. Raymond, David J. Erle, Magnus Åbrink, George H. Caughey, Xiaozhu Huang, Dean Sheppard

×

Krüppel-like factor 4 regulates macrophage polarization
Xudong Liao, … , Karine Clément, Mukesh K. Jain
Xudong Liao, … , Karine Clément, Mukesh K. Jain
Published June 13, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI45444.
View: Text | PDF

Krüppel-like factor 4 regulates macrophage polarization

  • Text
  • PDF
Abstract

Current paradigms suggest that two macrophage subsets, termed M1 and M2, are involved in inflammation and host defense. While the distinct functions of M1 and M2 macrophages have been intensively studied — the former are considered proinflammatory and the latter antiinflammatory — the determinants of their speciation are incompletely understood. Here we report our studies that identify Krüppel-like factor 4 (KLF4) as a critical regulator of macrophage polarization. Macrophage KLF4 expression was robustly induced in M2 macrophages and strongly reduced in M1 macrophages, observations that were recapitulated in human inflammatory paradigms in vivo. Mechanistically, KLF4 was found to cooperate with Stat6 to induce an M2 genetic program and inhibit M1 targets via sequestration of coactivators required for NF-κB activation. KLF4-deficient macrophages demonstrated increased proinflammatory gene expression, enhanced bactericidal activity, and altered metabolism. Furthermore, mice bearing myeloid-specific deletion of KLF4 exhibited delayed wound healing and were predisposed to developing diet-induced obesity, glucose intolerance, and insulin resistance. Collectively, these data identify KLF4 as what we believe to be a novel regulator of macrophage polarization.

Authors

Xudong Liao, Nikunj Sharma, Fehmida Kapadia, Guangjin Zhou, Yuan Lu, Hong Hong, Kaavya Paruchuri, Ganapati H. Mahabeleshwar, Elise Dalmas, Nicolas Venteclef, Chris A. Flask, Julian Kim, Bryan W. Doreian, Kurt Q. Lu, Klaus H. Kaestner, Anne Hamik, Karine Clément, Mukesh K. Jain

×

Prolyl hydroxylase 3 (PHD3) is essential for hypoxic regulation of neutrophilic inflammation in humans and mice
Sarah R. Walmsley, … , Peter Carmeliet, Moira K.B. Whyte
Sarah R. Walmsley, … , Peter Carmeliet, Moira K.B. Whyte
Published February 7, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI43273.
View: Text | PDF

Prolyl hydroxylase 3 (PHD3) is essential for hypoxic regulation of neutrophilic inflammation in humans and mice

  • Text
  • PDF
Abstract

The regulation of neutrophil lifespan by induction of apoptosis is critical for maintaining an effective host response and preventing excessive inflammation. The hypoxia-inducible factor (HIF) oxygen-sensing pathway has a major effect on the susceptibility of neutrophils to apoptosis, with a marked delay in cell death observed under hypoxic conditions. HIF expression and transcriptional activity are regulated by the oxygen-sensitive prolyl hydroxylases (PHD1–3), but the role of PHDs in neutrophil survival is unclear. We examined PHD expression in human neutrophils and found that PHD3 was strongly induced in response to hypoxia and inflammatory stimuli in vitro and in vivo. Using neutrophils from mice deficient in Phd3, we demonstrated a unique role for Phd3 in prolonging neutrophil survival during hypoxia, distinct from other hypoxia-associated changes in neutrophil function and metabolic activity. Moreover, this selective defect in neutrophil survival occurred in the presence of preserved HIF transcriptional activity but was associated with upregulation of the proapoptotic mediator Siva1 and loss of its binding target Bcl-xL. In vivo, using an acute lung injury model, we observed increased levels of neutrophil apoptosis and clearance in Phd3-deficient mice compared with WT controls. We also observed reduced neutrophilic inflammation in an acute mouse model of colitis. These data support what we believe to be a novel function for PHD3 in regulating neutrophil survival in hypoxia and may enable the development of new therapeutics for inflammatory disease.

Authors

Sarah R. Walmsley, Edwin R. Chilvers, Alfred A. Thompson, Kathryn Vaughan, Helen M. Marriott, Lisa C. Parker, Gary Shaw, Selina Parmar, Martin Schneider, Ian Sabroe, David H. Dockrell, Marta Milo, Cormac T. Taylor, Randall S. Johnson, Christopher W. Pugh, Peter J. Ratcliffe, Patrick H. Maxwell, Peter Carmeliet, Moira K.B. Whyte

×

An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice
Anca Sindrilaru, … , Cord Sunderkötter, Karin Scharffetter-Kochanek
Anca Sindrilaru, … , Cord Sunderkötter, Karin Scharffetter-Kochanek
Published February 7, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI44490.
View: Text | PDF

An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice

  • Text
  • PDF
Abstract

Uncontrolled macrophage activation is now considered to be a critical event in the pathogenesis of chronic inflammatory diseases such as atherosclerosis, multiple sclerosis, and chronic venous leg ulcers. However, it is still unclear which environmental cues induce persistent activation of macrophages in vivo and how macrophage-derived effector molecules maintain chronic inflammation and affect resident fibroblasts essential for tissue homeostasis and repair. We used a complementary approach studying human subjects with chronic venous leg ulcers, a model disease for macrophage-driven chronic inflammation, while establishing a mouse model closely reflecting its pathogenesis. Here, we have shown that iron overloading of macrophages — as was found to occur in human chronic venous leg ulcers and the mouse model — induced a macrophage population in situ with an unrestrained proinflammatory M1 activation state. Via enhanced TNF-α and hydroxyl radical release, this macrophage population perpetuated inflammation and induced a p16INK4a-dependent senescence program in resident fibroblasts, eventually leading to impaired wound healing. This study provides insight into the role of what we believe to be a previously undescribed iron-induced macrophage population in vivo. Targeting this population may hold promise for the development of novel therapies for chronic inflammatory diseases such as chronic venous leg ulcers.

Authors

Anca Sindrilaru, Thorsten Peters, Stefan Wieschalka, Corina Baican, Adrian Baican, Henriette Peter, Adelheid Hainzl, Susanne Schatz, Yu Qi, Andrea Schlecht, Johannes M. Weiss, Meinhard Wlaschek, Cord Sunderkötter, Karin Scharffetter-Kochanek

×

Leukotriene B4 amplifies NF-κB activation in mouse macrophages by reducing SOCS1 inhibition of MyD88 expression
Carlos H. Serezani, … , Sonia Jancar, Marc Peters-Golden
Carlos H. Serezani, … , Sonia Jancar, Marc Peters-Golden
Published January 4, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI43302.
View: Text | PDF

Leukotriene B4 amplifies NF-κB activation in mouse macrophages by reducing SOCS1 inhibition of MyD88 expression

  • Text
  • PDF
Abstract

Activation of NF-κB and 5-lipoxygenase–mediated (5-LO–mediated) biosynthesis of the lipid mediator leukotriene B4 (LTB4) are pivotal components of host defense and inflammatory responses. However, the role of LTB4 in mediating innate immune responses elicited by specific TLR ligands and cytokines is unknown. Here we have shown that responses dependent on MyD88 (an adaptor protein that mediates signaling through all of the known TLRs, except TLR3, as well as IL-1β and IL-18) are reduced in mice lacking either 5-LO or the LTB4 receptor BTL1, and that macrophages from these mice are impaired in MyD88-dependent activation of NF-κB. This macrophage defect was associated with lower basal and inducible expression of MyD88 and reflected impaired activation of STAT1 and overexpression of the STAT1 inhibitor SOCS1. Expression of MyD88 and responsiveness to the TLR4 ligand LPS were decreased by Stat1 siRNA silencing in WT macrophages and restored by Socs1 siRNA in 5-LO–deficient macrophages. These results uncover a pivotal role in macrophages for the GPCR BLT1 in regulating activation of NF-κB through Stat1-dependent expression of MyD88.

Authors

Carlos H. Serezani, Casey Lewis, Sonia Jancar, Marc Peters-Golden

×

Bcl3 prevents acute inflammatory lung injury in mice by restraining emergency granulopoiesis
Daniel Kreisel, … , Ruaidhri J. Carmody, Andrew E. Gelman
Daniel Kreisel, … , Ruaidhri J. Carmody, Andrew E. Gelman
Published December 13, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI42596.
View: Text | PDF

Bcl3 prevents acute inflammatory lung injury in mice by restraining emergency granulopoiesis

  • Text
  • PDF
Abstract

Granulocytes are pivotal regulators of tissue injury. However, the transcriptional mechanisms that regulate granulopoiesis under inflammatory conditions are poorly understood. Here we show that the transcriptional coregulator B cell leukemia/lymphoma 3 (Bcl3) limits granulopoiesis under emergency (i.e., inflammatory) conditions, but not homeostatic conditions. Treatment of mouse myeloid progenitors with G-CSF — serum concentrations of which rise under inflammatory conditions — rapidly increased Bcl3 transcript accumulation in a STAT3-dependent manner. Bcl3-deficient myeloid progenitors demonstrated an enhanced capacity to proliferate and differentiate into granulocytes following G-CSF stimulation, whereas the accumulation of Bcl3 protein attenuated granulopoiesis in an NF-κB p50–dependent manner. In a clinically relevant model of transplant-mediated lung ischemia reperfusion injury, expression of Bcl3 in recipients inhibited emergency granulopoiesis and limited acute graft damage. These data demonstrate a critical role for Bcl3 in regulating emergency granulopoiesis and suggest that targeting the differentiation of myeloid progenitors may be a therapeutic strategy for preventing inflammatory lung injury.

Authors

Daniel Kreisel, Seiichiro Sugimoto, Jeremy Tietjens, Jihong Zhu, Sumiharu Yamamoto, Alexander S. Krupnick, Ruaidhri J. Carmody, Andrew E. Gelman

×

Mammalian target of rapamycin activation underlies HSC defects in autoimmune disease and inflammation in mice
Chong Chen, … , Yang Liu, Pan Zheng
Chong Chen, … , Yang Liu, Pan Zheng
Published December 1, 2010
Citation Information: J Clin Invest. 2010;120(12):4583-4583. https://doi.org/10.1172/JCI43873C1.
View: Text | PDF | Amended Article

Mammalian target of rapamycin activation underlies HSC defects in autoimmune disease and inflammation in mice

  • Text
  • PDF
Abstract

Authors

Chong Chen, Yu Liu, Yang Liu, Pan Zheng

×

Genetic and therapeutic targeting of properdin in mice prevents complement-mediated tissue injury
Yuko Kimura, … , Takashi Miwa, Wen-Chao Song
Yuko Kimura, … , Takashi Miwa, Wen-Chao Song
Published September 1, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI41782.
View: Text | PDF

Genetic and therapeutic targeting of properdin in mice prevents complement-mediated tissue injury

  • Text
  • PDF
Abstract

The alternative pathway (AP) of complement activation is constitutively active and must be regulated by host proteins to prevent autologous tissue injury. Dysfunction of AP regulatory proteins has been linked to several human inflammatory disorders. Properdin is a positive regulator of AP complement activation that has been shown to extend the half-life of cell surface–bound C3 convertase C3bBb; it may also initiate AP complement activation. Here, we demonstrate a critical role for properdin in autologous tissue injury mediated by AP complement activation. We identified myeloid lineage cells as the principal source of plasma properdin by generating mice with global and tissue-specific knockout of Cfp (which encodes properdin) and by generating BM chimeric mice. Properdin deficiency rescued mice from AP complement–mediated embryonic lethality caused by deficiency of the membrane complement regulator Crry and markedly reduced disease severity in the K/BxN model of arthritis. Ab neutralization of properdin in WT mice similarly ameliorated arthritis development, whereas reconstitution of properdin-null mice with exogenous properdin restored arthritis sensitivity. These data implicate systemic properdin as a key contributor to AP complement–mediated injury and support its therapeutic targeting in complement-dependent human diseases.

Authors

Yuko Kimura, Lin Zhou, Takashi Miwa, Wen-Chao Song

×
  • ← Previous
  • 1
  • 2
  • …
  • 27
  • 28
  • 29
  • 30
  • 31
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts