Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Immunology

  • 1,452 Articles
  • 3 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 112
  • 113
  • 114
  • …
  • 145
  • 146
  • Next →
Mutation in the TCRα subunit constant gene (TRAC) leads to a human immunodeficiency disorder characterized by a lack of TCRαβ+ T cells
Neil V. Morgan, Sarah Goddard, Tony S. Cardno, David McDonald, Fatimah Rahman, Dawn Barge, Andrew Ciupek, Anna Straatman-Iwanowska, Shanaz Pasha, Mary Guckian, Graham Anderson, Aarnoud Huissoon, Andrew Cant, Warren P. Tate, Sophie Hambleton, Eamonn R. Maher
Neil V. Morgan, Sarah Goddard, Tony S. Cardno, David McDonald, Fatimah Rahman, Dawn Barge, Andrew Ciupek, Anna Straatman-Iwanowska, Shanaz Pasha, Mary Guckian, Graham Anderson, Aarnoud Huissoon, Andrew Cant, Warren P. Tate, Sophie Hambleton, Eamonn R. Maher
View: Text | PDF

Mutation in the TCRα subunit constant gene (TRAC) leads to a human immunodeficiency disorder characterized by a lack of TCRαβ+ T cells

  • Text
  • PDF
Abstract

Inherited immunodeficiency disorders can be caused by mutations in any one of a large number of genes involved in the function of immune cells. Here, we describe two families with an autosomal recessive inherited immunodeficiency disorder characterized by increased susceptibility to infection and autoimmunity. Genetic linkage studies mapped the disorder to chromosomal region 14q11.2, and a homozygous guanine-to-adenine substitution was identified at the last base of exon 3 immediately following the translational termination codon in the TCRα subunit constant gene (TRAC). RT-PCR analysis in the two affected individuals revealed impaired splicing of the mRNA, as exon 3 was lost from the TRAC transcript. The mutant TCRα chain protein was predicted to lack part of the connecting peptide domain and all of the transmembrane and cytoplasmic domains, which have a critical role in the regulation of the assembly and/or intracellular transport of TCR complexes. We found that T cells from affected individuals were profoundly impaired for surface expression of the TCRαβ complex. We believe this to be the first report of a disease-causing human TRAC mutation. Although the absence of TCRαβ+ T cells in the affected individuals was associated with immune dysregulation and autoimmunity, they had a surprising level of protection against infection.

Authors

Neil V. Morgan, Sarah Goddard, Tony S. Cardno, David McDonald, Fatimah Rahman, Dawn Barge, Andrew Ciupek, Anna Straatman-Iwanowska, Shanaz Pasha, Mary Guckian, Graham Anderson, Aarnoud Huissoon, Andrew Cant, Warren P. Tate, Sophie Hambleton, Eamonn R. Maher

×

Endogenous collagen peptide activation of CD1d-restricted NKT cells ameliorates tissue-specific inflammation in mice
Yawei Liu, Anna Teige, Emma Mondoc, Saleh Ibrahim, Rikard Holmdahl, Shohreh Issazadeh-Navikas
Yawei Liu, Anna Teige, Emma Mondoc, Saleh Ibrahim, Rikard Holmdahl, Shohreh Issazadeh-Navikas
View: Text | PDF

Endogenous collagen peptide activation of CD1d-restricted NKT cells ameliorates tissue-specific inflammation in mice

  • Text
  • PDF
Abstract

NKT cells in the mouse recognize antigen in the context of the MHC class I–like molecule CD1d and play an important role in peripheral tolerance and protection against autoimmune and other diseases. NKT cells are usually activated by CD1d-presented lipid antigens. However, peptide recognition in the context of CD1 has also been documented, although no self-peptide ligands have been reported to date. Here, we have identified an endogenous peptide that is presented by CD1d to activate mouse NKT cells. This peptide, the immunodominant epitope from mouse collagen type II (mCII707–721), was not associated with either MHC class I or II. Activation of CD1d-restricted mCII707–721–specific NKT cells was induced via TCR signaling and classical costimulation. In addition, mCII707–721–specific NKT cells induced T cell death through Fas/FasL, in an IL-17A–independent fashion. Moreover, mCII707–721–specific NKT cells suppressed a range of in vivo inflammatory conditions, including delayed-type hypersensitivity, antigen-induced airway inflammation, collagen-induced arthritis, and EAE, which were all ameliorated by mCII707-721 vaccination. The findings presented here offer new insight into the intrinsic roles of NKT cells in health and disease. Given the results, endogenous collagen peptide activators of NKT cells may offer promise as novel therapeutics in tissue-specific autoimmune and inflammatory diseases.

Authors

Yawei Liu, Anna Teige, Emma Mondoc, Saleh Ibrahim, Rikard Holmdahl, Shohreh Issazadeh-Navikas

×

Paired analysis of TCRα and TCRβ chains at the single-cell level in mice
Pradyot Dash, Jennifer L. McClaren, Thomas H. Oguin III, William Rothwell, Brandon Todd, Melissa Y. Morris, Jared Becksfort, Cory Reynolds, Scott A. Brown, Peter C. Doherty, Paul G. Thomas
Pradyot Dash, Jennifer L. McClaren, Thomas H. Oguin III, William Rothwell, Brandon Todd, Melissa Y. Morris, Jared Becksfort, Cory Reynolds, Scott A. Brown, Peter C. Doherty, Paul G. Thomas
View: Text | PDF

Paired analysis of TCRα and TCRβ chains at the single-cell level in mice

  • Text
  • PDF
Abstract

Characterizing the TCRα and TCRβ chains expressed by T cells responding to a given pathogen or underlying autoimmunity helps in the development of vaccines and immunotherapies, respectively. However, our understanding of complementary TCRα and TCRβ chain utilization is very limited for pathogen- and autoantigen-induced immunity. To address this problem, we have developed a multiplex nested RT-PCR method for the simultaneous amplification of transcripts encoding the TCRα and TCRβ chains from single cells. This multiplex method circumvented the lack of antibodies specific for variable regions of mouse TCRα chains and the need for prior knowledge of variable region usage in the TCRβ chain, resulting in a comprehensive, unbiased TCR repertoire analysis with paired coexpression of TCRα and TCRβ chains with single-cell resolution. Using CD8+ CTLs specific for an influenza epitope recovered directly from the pneumonic lungs of mice, this technique determined that 25% of such effectors expressed a dominant, nonproductively rearranged Tcra transcript. T cells with these out-of-frame Tcra mRNAs also expressed an alternate, in-frame Tcra, whereas approximately 10% of T cells had 2 productive Tcra transcripts. The proportion of cells with biallelic transcription increased over the course of a response, a finding that has implications for immune memory and autoimmunity. This technique may have broad applications in mouse models of human disease.

Authors

Pradyot Dash, Jennifer L. McClaren, Thomas H. Oguin III, William Rothwell, Brandon Todd, Melissa Y. Morris, Jared Becksfort, Cory Reynolds, Scott A. Brown, Peter C. Doherty, Paul G. Thomas

×

Angiotensin II sustains brain inflammation in mice via TGF-β
Tobias V. Lanz, Zhaoqing Ding, Peggy P. Ho, Jian Luo, Ankur N. Agrawal, Hrishikesh Srinagesh, Robert Axtell, Hui Zhang, Michael Platten, Tony Wyss-Coray, Lawrence Steinman
Tobias V. Lanz, Zhaoqing Ding, Peggy P. Ho, Jian Luo, Ankur N. Agrawal, Hrishikesh Srinagesh, Robert Axtell, Hui Zhang, Michael Platten, Tony Wyss-Coray, Lawrence Steinman
View: Text | PDF

Angiotensin II sustains brain inflammation in mice via TGF-β

  • Text
  • PDF
Abstract

The renin-angiotensin-aldosterone system (RAAS) is a key hormonal system regulating blood pressure. However, expression of RAAS components has recently been detected in immune cells, and the RAAS has been implicated in several mouse models of autoimmune disease. Here, we have identified Ang II as a paracrine mediator, sustaining inflammation in the CNS in the EAE mouse model of MS via TGF-β. Ang II type 1 receptors (AT1Rs) were found to be primarily expressed in CNS-resident cells during EAE. In vitro, astrocytes and microglia responded to Ang II treatment by inducing TGF-β expression via a pathway involving the TGF-β–activating protease thrombospondin-1 (TSP-1). TGF-β upregulation in astrocytes and microglia during EAE was blocked with candesartan (CA), an inhibitor of AT1R. Treatment of EAE with CA ameliorated paralysis and blunted lymphocyte infiltration into the CNS, outcomes that were also seen with genetic ablation of AT1Ra and treatment with an inhibitor of TSP-1. These data suggest that AT1R antagonists, frequently prescribed as antihypertensives, may be useful to interrupt this proinflammatory, CNS-specific pathway in individuals with MS.

Authors

Tobias V. Lanz, Zhaoqing Ding, Peggy P. Ho, Jian Luo, Ankur N. Agrawal, Hrishikesh Srinagesh, Robert Axtell, Hui Zhang, Michael Platten, Tony Wyss-Coray, Lawrence Steinman

×

Antagonism of TIM-1 blocks the development of disease in a humanized mouse model of allergic asthma
Sanchaita Sriwal Sonar, Yen-Ming Hsu, Melanie Lynn Conrad, Gerard R. Majeau, Ayse Kilic, Ellen Garber, Yan Gao, Chioma Nwankwo, Gundi Willer, Jan C. Dudda, Hellen Kim, Véronique Bailly, Axel Pagenstecher, Paul D. Rennert, Harald Renz
Sanchaita Sriwal Sonar, Yen-Ming Hsu, Melanie Lynn Conrad, Gerard R. Majeau, Ayse Kilic, Ellen Garber, Yan Gao, Chioma Nwankwo, Gundi Willer, Jan C. Dudda, Hellen Kim, Véronique Bailly, Axel Pagenstecher, Paul D. Rennert, Harald Renz
View: Text | PDF

Antagonism of TIM-1 blocks the development of disease in a humanized mouse model of allergic asthma

  • Text
  • PDF
Abstract

Studies in mice and humans have revealed that the T cell, immunoglobulin, mucin (TIM) genes are associated with several atopic diseases. TIM-1 is a type I membrane protein that is expressed on T cells upon stimulation and has been shown to modulate their activation. In addition to a recently described interaction with dendritic cells, TIM-1 has also been identified as a phosphatidylserine recognition molecule, and several protein ligands have been proposed. Our understanding of its activity is complicated by the possibility that TIM-1 possesses multiple and diverse binding partners. In order to delineate the function of TIM-1, we generated monoclonal antibodies directed to a cleft formed within the IgV domain of TIM-1. We have shown here that antibodies that bind to this defined cleft antagonize TIM-1 binding to specific ligands and cells. Notably, these antibodies exhibited therapeutic activity in a humanized SCID model of experimental asthma, ameliorating inflammation, and airway hyperresponsiveness. Further experiments demonstrated that the effects of the TIM-1–specific antibodies were mediated via suppression of Th2 cell proliferation and cytokine production. These results demonstrate that modulation of the TIM-1 pathway can critically influence activated T cells in a humanized disease model, suggesting that TIM-1 antagonists may provide potent therapeutic benefit in asthma and other immune-mediated disorders.

Authors

Sanchaita Sriwal Sonar, Yen-Ming Hsu, Melanie Lynn Conrad, Gerard R. Majeau, Ayse Kilic, Ellen Garber, Yan Gao, Chioma Nwankwo, Gundi Willer, Jan C. Dudda, Hellen Kim, Véronique Bailly, Axel Pagenstecher, Paul D. Rennert, Harald Renz

×

Primary deficiency of microsomal triglyceride transfer protein in human abetalipoproteinemia is associated with loss of CD1 function
Sebastian Zeissig, Stephanie K. Dougan, Duarte C. Barral, Yvonne Junker, Zhangguo Chen, Arthur Kaser, Madelyn Ho, Hannah Mandel, Adam McIntyre, Susan M. Kennedy, Gavin F. Painter, Natacha Veerapen, Gurdyal S. Besra, Vincenzo Cerundolo, Simon Yue, Sarah Beladi, Samuel M. Behar, Xiuxu Chen, Jenny E. Gumperz, Karine Breckpot, Anna Raper, Amanda Baer, Mark A. Exley, Robert A. Hegele, Marina Cuchel, Daniel J. Rader, Nicholas O. Davidson, Richard S. Blumberg
Sebastian Zeissig, Stephanie K. Dougan, Duarte C. Barral, Yvonne Junker, Zhangguo Chen, Arthur Kaser, Madelyn Ho, Hannah Mandel, Adam McIntyre, Susan M. Kennedy, Gavin F. Painter, Natacha Veerapen, Gurdyal S. Besra, Vincenzo Cerundolo, Simon Yue, Sarah Beladi, Samuel M. Behar, Xiuxu Chen, Jenny E. Gumperz, Karine Breckpot, Anna Raper, Amanda Baer, Mark A. Exley, Robert A. Hegele, Marina Cuchel, Daniel J. Rader, Nicholas O. Davidson, Richard S. Blumberg
View: Text | PDF

Primary deficiency of microsomal triglyceride transfer protein in human abetalipoproteinemia is associated with loss of CD1 function

  • Text
  • PDF
Abstract

Abetalipoproteinemia (ABL) is a rare Mendelian disorder of lipid metabolism due to genetic deficiency in microsomal triglyceride transfer protein (MTP). It is associated with defects in MTP-mediated lipid transfer onto apolipoprotein B (APOB) and impaired secretion of APOB-containing lipoproteins. Recently, MTP was shown to regulate the CD1 family of lipid antigen-presenting molecules, but little is known about immune function in ABL patients. Here, we have shown that ABL is characterized by immune defects affecting presentation of self and microbial lipid antigens by group 1 (CD1a, CD1b, CD1c) and group 2 (CD1d) CD1 molecules. In dendritic cells isolated from ABL patients, MTP deficiency was associated with increased proteasomal degradation of group 1 CD1 molecules. Although CD1d escaped degradation, it was unable to load antigens and exhibited functional defects similar to those affecting the group 1 CD1 molecules. The reduction in CD1 function resulted in impaired activation of CD1-restricted T and invariant natural killer T (iNKT) cells and reduced numbers and phenotypic alterations of iNKT cells consistent with central and peripheral CD1 defects in vivo. These data highlight MTP as a unique regulator of human metabolic and immune pathways and reveal that ABL is not only a disorder of lipid metabolism but also an immune disease involving CD1.

Authors

Sebastian Zeissig, Stephanie K. Dougan, Duarte C. Barral, Yvonne Junker, Zhangguo Chen, Arthur Kaser, Madelyn Ho, Hannah Mandel, Adam McIntyre, Susan M. Kennedy, Gavin F. Painter, Natacha Veerapen, Gurdyal S. Besra, Vincenzo Cerundolo, Simon Yue, Sarah Beladi, Samuel M. Behar, Xiuxu Chen, Jenny E. Gumperz, Karine Breckpot, Anna Raper, Amanda Baer, Mark A. Exley, Robert A. Hegele, Marina Cuchel, Daniel J. Rader, Nicholas O. Davidson, Richard S. Blumberg

×

PET probes for distinct metabolic pathways have different cell specificities during immune responses in mice
Evan Nair-Gill, Stephanie M. Wiltzius, Xiao X. Wei, Donghui Cheng, Mireille Riedinger, Caius G. Radu, Owen N. Witte
Evan Nair-Gill, Stephanie M. Wiltzius, Xiao X. Wei, Donghui Cheng, Mireille Riedinger, Caius G. Radu, Owen N. Witte
View: Text | PDF | Amended Article

PET probes for distinct metabolic pathways have different cell specificities during immune responses in mice

  • Text
  • PDF
Abstract

Authors

Evan Nair-Gill, Stephanie M. Wiltzius, Xiao X. Wei, Donghui Cheng, Mireille Riedinger, Caius G. Radu, Owen N. Witte

×

PD-L1 has distinct functions in hematopoietic and nonhematopoietic cells in regulating T cell responses during chronic infection in mice
Scott N. Mueller, Vijay K. Vanguri, Sang-Jun Ha, Erin E. West, Mary E. Keir, Jonathan N. Glickman, Arlene H. Sharpe, Rafi Ahmed
Scott N. Mueller, Vijay K. Vanguri, Sang-Jun Ha, Erin E. West, Mary E. Keir, Jonathan N. Glickman, Arlene H. Sharpe, Rafi Ahmed
View: Text | PDF

PD-L1 has distinct functions in hematopoietic and nonhematopoietic cells in regulating T cell responses during chronic infection in mice

  • Text
  • PDF
Abstract

The inhibitory receptor programmed death 1 (PD-1) is upregulated on antigen-specific CD8+ T cells during persistent viral infections. Interaction with PD-1 ligand 1 (PD-L1) contributes to functional exhaustion of responding T cells and may limit immunopathology during infection. PD-L1 is expressed on both hematopoietic and nonhematopoietic cells in tissues. However, the exact roles of PD-L1 on hematopoietic versus nonhematopoietic cells in modulating immune responses are unclear. Here we used bone marrow chimeric mice to examine the effects of PD-L1 deficiency in hematopoietic or nonhematopoietic cells during lymphocytic choriomeningitis virus clone 13 (LCMV CL-13) infection. We found that PD-L1 expression on hematopoietic cells inhibited CD8+ T cell numbers and function after LCMV CL-13 infection. In contrast, PD-L1 expression on nonhematopoietic cells limited viral clearance and immunopathology in infected tissues. Together, these data demonstrate that there are distinct roles for PD-L1 on hematopoietic and nonhematopoietic cells in regulating CD8+ T cell responses and viral clearance during chronic viral infection.

Authors

Scott N. Mueller, Vijay K. Vanguri, Sang-Jun Ha, Erin E. West, Mary E. Keir, Jonathan N. Glickman, Arlene H. Sharpe, Rafi Ahmed

×

Distinct roles for PTEN in prevention of T cell lymphoma and autoimmunity in mice
Xiaohe Liu, Jodi L. Karnell, Bu Yin, Ruan Zhang, Jidong Zhang, Peiying Li, Yongwon Choi, Jonathan S. Maltzman, Warren S. Pear, Craig H. Bassing, Laurence A. Turka
Xiaohe Liu, Jodi L. Karnell, Bu Yin, Ruan Zhang, Jidong Zhang, Peiying Li, Yongwon Choi, Jonathan S. Maltzman, Warren S. Pear, Craig H. Bassing, Laurence A. Turka
View: Text | PDF

Distinct roles for PTEN in prevention of T cell lymphoma and autoimmunity in mice

  • Text
  • PDF
Abstract

Mutations in the tumor-suppressor gene phosphatase and tensin homolog deleted on chromosome 10 (Pten) are associated with multiple cancers in humans, including T cell malignancies. Targeted deletion of Pten in T cells induces both a disseminated “mature phenotype” lymphoma and a lymphoproliferative autoimmune syndrome in mice. Here, we have shown that these two diseases are separable and mediated by T lineage cells of distinct developmental stages. Loss of PTEN was found to be a powerful driver of lymphomagenesis within the thymus characterized by overexpression of the c-myc oncogene. In an otherwise normal thymic environment, PTEN-deficient T cell lymphomas invariably harbored RAG-dependent reciprocal t(14:15) chromosomal translocations involving the T cell receptor alpha/delta locus and c-myc, and their survival and growth was TCR dependent, but Notch independent. However, lymphomas occurred even if TCR recombination was prevented, although these lymphomas were less mature, arose later in life, and, importantly, were dependent upon Notch pathways to upregulate c-myc expression. In contrast, using the complementary methods of early thymectomy and adoptive transfers, we found that PTEN-deficient mature T cells were unable to undergo malignant transformation but were sufficient for the development of autoimmunity. These data suggest multiple and distinct regulatory roles for PTEN in the molecular pathogenesis of lymphoma and autoimmunity.

Authors

Xiaohe Liu, Jodi L. Karnell, Bu Yin, Ruan Zhang, Jidong Zhang, Peiying Li, Yongwon Choi, Jonathan S. Maltzman, Warren S. Pear, Craig H. Bassing, Laurence A. Turka

×

CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow
Kyle J. Eash, Adam M. Greenbaum, Priya K. Gopalan, Daniel C. Link
Kyle J. Eash, Adam M. Greenbaum, Priya K. Gopalan, Daniel C. Link
View: Text | PDF

CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow

  • Text
  • PDF
Abstract

Neutrophils are a major component of the innate immune response. Their homeostasis is maintained, in part, by the regulated release of neutrophils from the bone marrow. Constitutive expression of the chemokine CXCL12 by bone marrow stromal cells provides a key retention signal for neutrophils in the bone marrow through activation of its receptor, CXCR4. Attenuation of CXCR4 signaling leads to entry of neutrophils into the circulation through unknown mechanisms. We investigated the role of CXCR2-binding ELR+ chemokines in neutrophil trafficking using mouse mixed bone marrow chimeras reconstituted with Cxcr2–/– and WT cells. In this context, neutrophils lacking CXCR2 were preferentially retained in the bone marrow, a phenotype resembling the congenital disorder myelokathexis, which is characterized by chronic neutropenia. Additionally, transient disruption of CXCR4 failed to mobilize Cxcr2–/– neutrophils. However, neutrophils lacking both CXCR2 and CXCR4 displayed constitutive mobilization, showing that CXCR4 plays a dominant role in neutrophil trafficking. With regard to CXCR2 ligands, bone marrow endothelial cells and osteoblasts constitutively expressed the ELR+ chemokines CXCL1 and CXCL2, and CXCL2 expression was induced in endothelial cells during G-CSF–induced neutrophil mobilization. Collectively, these data suggest that CXCR2 signaling is a second chemokine axis that interacts antagonistically with CXCR4 to regulate neutrophil release from the bone marrow.

Authors

Kyle J. Eash, Adam M. Greenbaum, Priya K. Gopalan, Daniel C. Link

×
  • ← Previous
  • 1
  • 2
  • …
  • 112
  • 113
  • 114
  • …
  • 145
  • 146
  • Next →
Exosome delivery promotes allograft rejection
Quan Lui and colleagues reveal that delivery of donor MHC-containing exosomes from donor DCs to recipient DCs drive allograft-targeting immune responses…
Published June 27, 2016
Scientific Show StopperImmunology

Helminth co-infection exacerbates tuberculosis
Leticia Monin and colleagues provide insight how helminth co-infection drives increased susceptibility to severe tuberculosis...
Published November 16, 2015
Scientific Show StopperImmunology

Directing T cell traffic
Yanping Huang and colleagues demonstrate that CRK and CRKL regulate T cell trafficking and T cells lacking these adapter proteins do not home to sites of inflammation….
Published January 26, 2015
Scientific Show StopperImmunology
Advertisement

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts