Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Hepatology

  • 167 Articles
  • 2 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 14
  • 15
  • 16
  • 17
  • Next →
Neonatal NK cells target the mouse duct epithelium via Nkg2d and drive tissue-specific injury in experimental biliary atresia
Pranavkumar Shivakumar, … , Claire A. Chougnet, Jorge A. Bezerra
Pranavkumar Shivakumar, … , Claire A. Chougnet, Jorge A. Bezerra
Published July 6, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI38879.
View: Text | PDF

Neonatal NK cells target the mouse duct epithelium via Nkg2d and drive tissue-specific injury in experimental biliary atresia

  • Text
  • PDF
Abstract

Biliary atresia is a neonatal obstructive cholangiopathy that progresses to end-stage liver disease. Although the etiology is unknown, a neonatal adaptive immune signature has been mechanistically linked to obstruction of the extrahepatic bile ducts. Here, we investigated the role of the innate immune response in the pathogenesis of biliary atresia. Analysis of livers of infants at diagnosis revealed that NK cells populate the vicinity of intrahepatic bile ducts and overexpress several genes involved in cytotoxicity. Using a model of rotavirus-induced biliary atresia in newborn mice, we found that activated NK cells also populated murine livers and were the most abundant cells in extrahepatic bile ducts at the time of obstruction. Rotavirus-primed hepatic NK cells lysed cholangiocytes in a contact- and Nkg2d-dependent fashion. Depletion of NK cells and blockade of Nkg2d each prevented injury of the duct epithelium after rotavirus infection, maintained continuity of duct lumen between the liver and duodenum, and enabled bile flow, despite the presence of virus in the tissue and the overexpression of proinflammatory cytokines. These findings identify NK cells as key initiators of cholangiocyte injury via Nkg2d and demonstrate that injury to the duct epithelium drives the phenotype of experimental biliary atresia.

Authors

Pranavkumar Shivakumar, Gregg E. Sabla, Peter Whitington, Claire A. Chougnet, Jorge A. Bezerra

×

CCR1 and CCR5 promote hepatic fibrosis in mice
Ekihiro Seki, … , David A. Brenner, Robert F. Schwabe
Ekihiro Seki, … , David A. Brenner, Robert F. Schwabe
Published June 15, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI37444.
View: Text | PDF

CCR1 and CCR5 promote hepatic fibrosis in mice

  • Text
  • PDF
Abstract

Hepatic fibrosis develops as a response to chronic liver injury and almost exclusively occurs in a proinflammatory environment. However, the role of inflammatory mediators in fibrogenic responses of the liver is only poorly understood. We therefore investigated the role of CC chemokines and their receptors in hepatic fibrogenesis. The CC chemokines MIP-1α, MIP-1β, and RANTES and their receptors CCR1 and CCR5 were strongly upregulated in 2 experimental mouse models of fibrogenesis. Neutralization of CC chemokines by the broad-spectrum CC chemokine inhibitor 35k efficiently reduced hepatic fibrosis, and CCR1- and CCR5-deficient mice displayed substantially reduced hepatic fibrosis and macrophage infiltration. Analysis of fibrogenesis in CCR1- and CCR5-chimeric mice revealed that CCR1 mediates its profibrogenic effects in BM-derived cells, whereas CCR5 mediates its profibrogenic effects in resident liver cells. CCR5 promoted hepatic stellate cell (HSC) migration through a redox-sensitive, PI3K-dependent pathway. Both CCR5-deficient HSCs and CCR1- and CCR5-deficient Kupffer cells displayed strong suppression of CC chemokine–induced migration. Finally, we detected marked upregulation of RANTES, CCR1, and CCR5 in patients with hepatic cirrhosis, confirming activation of the CC chemokine system in human fibrogenesis. Our data therefore support a role for the CC chemokine system in hepatic fibrogenesis and suggest distinct roles for CCR1 and CCR5 in Kupffer cells and HSCs.

Authors

Ekihiro Seki, Samuele De Minicis, Geum-Youn Gwak, Johannes Kluwe, Sayaka Inokuchi, Christina A. Bursill, Josep M. Llovet, David A. Brenner, Robert F. Schwabe

×

The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents
Séverine Celton-Morizur, … , Germain Margall-Ducos, Chantal Desdouets
Séverine Celton-Morizur, … , Germain Margall-Ducos, Chantal Desdouets
Published June 15, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI38677.
View: Text | PDF

The insulin/Akt pathway controls a specific cell division program that leads to generation of binucleated tetraploid liver cells in rodents

  • Text
  • PDF
Abstract

The formation of polyploid cells is part of the developmental program of several tissues. During postnatal development, binucleated tetraploid cells arise in the liver, caused by failure in cytokinesis. In this report, we have shown that the initiation of cytokinesis failure events and the subsequent appearance of binucleated tetraploid cells are strictly controlled by the suckling-to-weaning transition in rodents. We found that daily light/dark rhythms and carbohydrate intake did not affect liver tetraploidy. In contrast, impairment of insulin signaling drastically reduced the formation of binucleated tetraploid cells, whereas repeated insulin injections promoted the generation of these liver cells. Furthermore, inhibition of Akt activity decreased the number of cytokinesis failure events, possibly through the mammalian target of rapamycin signaling complex 2 (mTORC2), which indicates that the PI3K/Akt pathway lies downstream of the insulin signal to regulate the tetraploidization process. To our knowledge, these results are the first demonstration in a physiological context that insulin signaling through Akt controls a specific cell division program and leads to the physiologic generation of binucleated tetraploid liver cells.

Authors

Séverine Celton-Morizur, Grégory Merlen, Dominique Couton, Germain Margall-Ducos, Chantal Desdouets

×

Foxa1 and Foxa2 regulate bile duct development in mice
Zhaoyu Li, … , Sara Sackett, Klaus H. Kaestner
Zhaoyu Li, … , Sara Sackett, Klaus H. Kaestner
Published May 11, 2009
Citation Information: J Clin Invest. 2009. https://doi.org/10.1172/JCI38201.
View: Text | PDF

Foxa1 and Foxa2 regulate bile duct development in mice

  • Text
  • PDF
Abstract

The forkhead box proteins A1 and A2 (Foxa1 and Foxa2) are transcription factors with critical roles in establishing the developmental competence of the foregut endoderm and in initiating liver specification. Using conditional gene ablation during a later phase of liver development, we show here that deletion of both Foxa1 and Foxa2 (Foxa1/2) in the embryonic liver caused hyperplasia of the biliary tree. Abnormal bile duct formation in Foxa1/2-deficient liver was due, at least in part, to activation of IL-6 expression, a proliferative signal for cholangiocytes. The glucocorticoid receptor is a negative regulator of IL-6 transcription; in the absence of Foxa1/2, the glucocorticoid receptor failed to bind to the IL-6 promoter, causing enhanced IL-6 expression. Thus, after liver specification, Foxa1/2 are required for normal bile duct development through prevention of excess cholangiocyte proliferation. Our data suggest that Foxa1/2 function as terminators of bile duct expansion in the adult liver through inhibition of IL-6 expression.

Authors

Zhaoyu Li, Peter White, Geetu Tuteja, Nir Rubins, Sara Sackett, Klaus H. Kaestner

×

Arsenic-stimulated liver sinusoidal capillarization in mice requires NADPH oxidase–generated superoxide
Adam C. Straub, … , Donna B. Stolz, Aaron Barchowsky
Adam C. Straub, … , Donna B. Stolz, Aaron Barchowsky
Published November 13, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI35092.
View: Text | PDF

Arsenic-stimulated liver sinusoidal capillarization in mice requires NADPH oxidase–generated superoxide

  • Text
  • PDF
Abstract

Environmental arsenic exposure, through drinking contaminated water, is a significant risk factor for developing vascular diseases and is associated with liver portal hypertension, vascular shunting, and portal fibrosis through unknown mechanisms. We found that the addition of low doses of arsenite to the drinking water of mice resulted in marked pathologic remodeling in liver sinusoidal endothelial cells (SECs), including SEC defenestration, capillarization, increased junctional PECAM-1 expression, protein nitration, and decreased liver clearance of modified albumin. Furthermore, the pathologic changes observed after in vivo exposure were recapitulated in isolated mouse SECs exposed to arsenic in culture. To investigate the role of NADPH oxidase–generated ROS in this remodeling, we examined the effect of arsenite in the drinking water of mice deficient for the p47 subunit of the NADPH oxidase and found that knockout mice were protected from arsenite-induced capillarization and protein nitration. Furthermore, ex vivo arsenic exposure increased SEC superoxide generation, and this effect was inhibited by addition of a Nox2 inhibitor and quenched by the cell-permeant superoxide scavenger. In addition, inhibiting either oxidant generation or Rac1-GTPase blocked ex vivo arsenic-stimulated SEC differentiation and dysfunction. Our data indicate that a Nox2-based oxidase is required for SEC capillarization and that it may play a central role in vessel remodeling following environmentally relevant arsenic exposures.

Authors

Adam C. Straub, Katherine A. Clark, Mark A. Ross, Ashwin G. Chandra, Song Li, Xiang Gao, Patrick J. Pagano, Donna B. Stolz, Aaron Barchowsky

×

Identification of pharmacological chaperones as potential therapeutic agents to treat phenylketonuria
Angel L. Pey, … , Javier Sancho, Aurora Martinez
Angel L. Pey, … , Javier Sancho, Aurora Martinez
Published July 1, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI34355.
View: Text | PDF

Identification of pharmacological chaperones as potential therapeutic agents to treat phenylketonuria

  • Text
  • PDF
Abstract

Phenylketonuria (PKU) is an inborn error of metabolism caused by mutations in phenylalanine hydroxylase (PAH). Over 500 disease-causing mutations have been identified in humans, most of which result in PAH protein misfolding and increased turnover in vivo. The use of pharmacological chaperones to stabilize or promote correct folding of mutant proteins represents a promising new direction in the treatment of misfolding diseases. We performed a high-throughput ligand screen of over 1,000 pharmacological agents and identified 4 compounds (I–IV) that enhanced the thermal stability of PAH and did not show substantial inhibition of PAH activity. In further studies, compounds III (3-amino-2-benzyl-7-nitro-4-(2-quinolyl)-1,2-dihydroisoquinolin-1-one) and IV (5,6-dimethyl-3-(4-methyl-2-pyridinyl)-2-thioxo-2,3-dihydrothieno[2,3- d]pyrimidin-4(1H)-one) stabilized the functional tetrameric conformation of recombinant WT-PAH and PKU mutants. These compounds also significantly increased activity and steady-state PAH protein levels in cells transiently transfected with either WT-PAH or PKU mutants. Furthermore, PAH activity in mouse liver increased after a 12-day oral administration of low doses of compounds III and IV. Thus, we have identified 2 small molecules that may represent promising alternatives in the treatment of PKU.

Authors

Angel L. Pey, Ming Ying, Nunilo Cremades, Adrian Velazquez-Campoy, Tanja Scherer, Beat Thöny, Javier Sancho, Aurora Martinez

×

Combination of ursodeoxycholic acid and glucocorticoids upregulates the AE2 alternate promoter in human liver cells
Fabián Arenas, … , Jesús Prieto, Juan F. Medina
Fabián Arenas, … , Jesús Prieto, Juan F. Medina
Published January 10, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI33156.
View: Text | PDF

Combination of ursodeoxycholic acid and glucocorticoids upregulates the AE2 alternate promoter in human liver cells

  • Text
  • PDF
Abstract

Primary biliary cirrhosis (PBC) is a cholestatic disease associated with autoimmune phenomena and alterations in both biliary bicarbonate excretion and expression of the bicarbonate carrier AE2. The bile acid ursodeoxycholic acid (UCDA) is currently used in treatment of cholestatic liver diseases and is the treatment of choice in PBC; however, a subset of PBC patients respond poorly to UDCA monotherapy. In these patients, a combination of UDCA and glucocorticoid therapy appears to be beneficial. To address the mechanism of this benefit, we analyzed the effects of UDCA and dexamethasone on AE2 gene expression in human liver cells from hepatocyte and cholangiocyte lineages. The combination of UDCA and dexamethasone, but not UDCA or dexamethasone alone, increased the expression of liver-enriched alternative mRNA isoforms AE2b1 and AE2b2 and enhanced AE2 activity. Similar effects were obtained after replacing UDCA with UDCA conjugates. In in vitro and in vivo reporter assays, we found that a UDCA/dexamethasone combination upregulated human AE2 alternate overlapping promoter sequences from which AE2b1 and AE2b2 are expressed. In chromatin immunoprecipitation assays, we demonstrated that combination UCDA/dexamethasone treatment induced p300-related interactions between HNF1 and glucocorticoid receptor on the AE2 alternate promoter. Our data provide a potential molecular explanation for the beneficial effects of the combination of UDCA and glucocorticoids in PBC patients with inadequate response to UDCA monotherapy.

Authors

Fabián Arenas, Isabel Hervias, Miriam Úriz, Ruth Joplin, Jesús Prieto, Juan F. Medina

×

PPARα activation is essential for HCV core protein–induced hepatic steatosis and hepatocellular carcinoma in mice
Naoki Tanaka, … , Frank J. Gonzalez, Toshifumi Aoyama
Naoki Tanaka, … , Frank J. Gonzalez, Toshifumi Aoyama
Published January 10, 2008
Citation Information: J Clin Invest. 2008. https://doi.org/10.1172/JCI33594.
View: Text | PDF

PPARα activation is essential for HCV core protein–induced hepatic steatosis and hepatocellular carcinoma in mice

  • Text
  • PDF
Abstract

Transgenic mice expressing HCV core protein develop hepatic steatosis and hepatocellular carcinoma (HCC), but the mechanism underlying this process remains unclear. Because PPARα is a central regulator of triglyceride homeostasis and mediates hepatocarcinogenesis in rodents, we determined whether PPARα contributes to HCV core protein–induced diseases. We generated PPARα-homozygous, -heterozygous, and -null mice with liver-specific transgenic expression of the core protein gene (Ppara+/+:HCVcpTg, Ppara+/–:HCVcpTg, and Ppara–/–:HCVcpTg mice. Severe steatosis was unexpectedly observed only in Ppara+/+:HCVcpTg mice, which resulted from enhanced fatty acid uptake and decreased mitochondrial β-oxidation due to breakdown of mitochondrial outer membranes. Interestingly, HCC developed in approximately 35% of 24-month-old Ppara+/+:HCVcpTg mice, but tumors were not observed in the other genotypes. These phenomena were found to be closely associated with sustained PPARα activation. In Ppara+/–:HCVcpTg mice, PPARα activation and the related changes did not occur despite the presence of a functional Ppara allele. However, long-term treatment of these mice with clofibrate, a PPARα activator, induced HCC with mitochondrial abnormalities and hepatic steatosis. Thus, our results indicate that persistent activation of PPARα is essential for the pathogenesis of hepatic steatosis and HCC induced by HCV infection.

Authors

Naoki Tanaka, Kyoji Moriya, Kendo Kiyosawa, Kazuhiko Koike, Frank J. Gonzalez, Toshifumi Aoyama

×

Hepatic Niemann-Pick C1–like 1 regulates biliary cholesterol concentration and is a target of ezetimibe
Ryan E. Temel, … , Lisa-Mari Nilsson, Liqing Yu
Ryan E. Temel, … , Lisa-Mari Nilsson, Liqing Yu
Published July 2, 2007
Citation Information: J Clin Invest. 2007;117(7):1968-1978. https://doi.org/10.1172/JCI30060.
View: Text | PDF

Hepatic Niemann-Pick C1–like 1 regulates biliary cholesterol concentration and is a target of ezetimibe

  • Text
  • PDF
Abstract

Niemann-Pick C1–like 1 (NPC1L1) is required for cholesterol absorption. Intestinal NPC1L1 appears to be a target of ezetimibe, a cholesterol absorption inhibitor that effectively lowers plasma LDL-cholesterol in humans. However, human liver also expresses NPC1L1. Hepatic function of NPC1L1 was previously unknown, but we recently discovered that NPC1L1 localizes to the canalicular membrane of primate hepatocytes and that NPC1L1 facilitates cholesterol uptake in hepatoma cells. Based upon these findings, we hypothesized that hepatic NPC1L1 allows the retention of biliary cholesterol by hepatocytes and that ezetimibe disrupts hepatic function of NPC1L1. To test this hypothesis, transgenic mice expressing human NPC1L1 in hepatocytes (L1-Tg mice) were created. Hepatic overexpression of NPC1L1 resulted in a 10- to 20-fold decrease in biliary cholesterol concentration, but not phospholipid and bile acid concentrations. This decrease was associated with a 30%–60% increase in plasma cholesterol, mainly because of the accumulation of apoE-rich HDL. Biliary and plasma cholesterol concentrations in these animals were virtually returned to normal with ezetimibe treatment. These findings suggest that in humans, ezetimibe may reduce plasma cholesterol by inhibiting NPC1L1 function in both intestine and liver, and hepatic NPC1L1 may have evolved to protect the body from excessive biliary loss of cholesterol.

Authors

Ryan E. Temel, Weiqing Tang, Yinyan Ma, Lawrence L. Rudel, Mark C. Willingham, Yiannis A. Ioannou, Joanna P. Davies, Lisa-Mari Nilsson, Liqing Yu

×

Essential role of TNF family molecule LIGHT as a cytokine in the pathogenesis of hepatitis
Sudarshan Anand, … , Lieping Chen, Koji Tamada
Sudarshan Anand, … , Lieping Chen, Koji Tamada
Published April 3, 2006
Citation Information: J Clin Invest. 2006;116(4):1045-1051. https://doi.org/10.1172/JCI27083.
View: Text | PDF

Essential role of TNF family molecule LIGHT as a cytokine in the pathogenesis of hepatitis

  • Text
  • PDF
Abstract

LIGHT is an important costimulatory molecule for T cell immunity. Recent studies have further implicated its role in innate immunity and inflammatory diseases, but its cellular and molecular mechanisms remain elusive. We report here that LIGHT is upregulated and functions as a proinflammatory cytokine in 2 independent experimental hepatitis models, induced by concanavalin A and Listeria monocytogenes. Molecular mutagenesis studies suggest that soluble LIGHT protein produced by cleavage from the cell membrane plays an important role in this effect through the interaction with the lymphotoxin-β receptor (LTβR) but not herpes virus entry mediator. NK1.1+ T cells contribute to the production, but not the cleavage or effector functions, of soluble LIGHT. Importantly, treatment with a mAb that specifically interferes with the LIGHT-LTβR interaction protects mice from lethal hepatitis. Our studies thus identify a what we believe to be a novel function of soluble LIGHT in vivo and offer a potential target for therapeutic interventions in hepatic inflammatory diseases.

Authors

Sudarshan Anand, Pu Wang, Kiyoshi Yoshimura, In-Hak Choi, Anja Hilliard, Youhai H. Chen, Chyung-Ru Wang, Richard Schulick, Andrew S. Flies, Dallas B. Flies, Gefeng Zhu, Yanhui Xu, Drew M. Pardoll, Lieping Chen, Koji Tamada

×
  • ← Previous
  • 1
  • 2
  • …
  • 14
  • 15
  • 16
  • 17
  • Next →
Tracing biliary cells in liver repair
Simone Jörs, Petia Jeliazkova, and colleagues demonstrate that the ductal compartment is not the main source of liver progenitor cells in response to hepatic injury…
Published April 27, 2015
Scientific Show StopperHepatology

The regenerating liver
Claus Kordes and colleagues demonstrate that hepatic stellate cells contribute to liver regeneration…
Published November 17, 2014
Scientific Show StopperHepatology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts