Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Hepatology

  • 169 Articles
  • 2 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • Next →
Aneuploidy as a mechanism for stress-induced liver adaptation
Andrew W. Duncan, … , Arthur L. Beaudet, Markus Grompe
Andrew W. Duncan, … , Arthur L. Beaudet, Markus Grompe
Published August 6, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI64026.
View: Text | PDF

Aneuploidy as a mechanism for stress-induced liver adaptation

  • Text
  • PDF
Abstract

Over half of the mature hepatocytes in mice and humans are aneuploid and yet retain full ability to undergo mitosis. This observation has raised the question of whether this unusual somatic genetic variation evolved as an adaptive mechanism in response to hepatic injury. According to this model, hepatotoxic insults select for hepatocytes with specific numerical chromosome abnormalities, rendering them differentially resistant to injury. To test this hypothesis, we utilized a strain of mice heterozygous for a mutation in the homogentisic acid dioxygenase (Hgd) gene located on chromosome 16. Loss of the remaining Hgd allele protects from fumarylacetoacetate hydrolase (Fah) deficiency, a genetic liver disease model. When adult mice heterozygous for Hgd and lacking Fah were exposed to chronic liver damage, injury-resistant nodules consisting of Hgd-null hepatocytes rapidly emerged. To determine whether aneuploidy played a role in this phenomenon, array comparative genomic hybridization (aCGH) and metaphase karyotyping were performed. Strikingly, loss of chromosome 16 was dramatically enriched in all mice that became completely resistant to tyrosinemia-induced hepatic injury. The frequency of chromosome 16–specific aneuploidy was approximately 50%. This result indicates that selection of a specific aneuploid karyotype can result in the adaptation of hepatocytes to chronic liver injury. The extent to which aneuploidy promotes hepatic adaptation in humans remains under investigation.

Authors

Andrew W. Duncan, Amy E. Hanlon Newell, Weimin Bi, Milton J. Finegold, Susan B. Olson, Arthur L. Beaudet, Markus Grompe

×

Liver LXRα expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice
Yuan Zhang, … , David J. Mangelsdorf, Ira G. Schulman
Yuan Zhang, … , David J. Mangelsdorf, Ira G. Schulman
Published April 9, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI59817.
View: Text | PDF

Liver LXRα expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice

  • Text
  • PDF
Abstract

Liver X receptors (LXRα and LXRβ) are important regulators of cholesterol and lipid metabolism, and their activation has been shown to inhibit cardiovascular disease and reduce atherosclerosis in animal models. Small molecule agonists of LXR activity are therefore of great therapeutic interest. However, the finding that such agonists also promote hepatic lipogenesis has led to the idea that hepatic LXR activity is undesirable from a therapeutic perspective. To investigate whether this might be true, we performed gene targeting to selectively delete LXRα in hepatocytes. Liver-specific deletion of LXRα in mice substantially decreased reverse cholesterol transport, cholesterol catabolism, and cholesterol excretion, revealing the essential importance of hepatic LXRα for whole body cholesterol homeostasis. Additionally, in a pro-atherogenic background, liver-specific deletion of LXRα increased atherosclerosis, uncovering an important function for hepatic LXR activity in limiting cardiovascular disease. Nevertheless, synthetic LXR agonists still elicited anti-atherogenic activity in the absence of hepatic LXRα, indicating that the ability of agonists to reduce cardiovascular disease did not require an increase in cholesterol excretion. Furthermore, when non-atherogenic mice were treated with synthetic LXR agonists, liver-specific deletion of LXRα eliminated the detrimental effect of increased plasma triglycerides, while the beneficial effect of increased plasma HDL was unaltered. In sum, these observations suggest that therapeutic strategies that bypass the liver or limit the activation of hepatic LXRs should still be beneficial for the treatment of cardiovascular disease.

Authors

Yuan Zhang, Sarah R. Breevoort, Jerry Angdisen, Mingui Fu, Daniel R. Schmidt, Sam R. Holmstrom, Steven A. Kliewer, David J. Mangelsdorf, Ira G. Schulman

×

Hepatocyte-specific mutation of both NF-κB RelA and STAT3 abrogates the acute phase response in mice
Lee J. Quinton, … , Avrum Spira, Joseph P. Mizgerd
Lee J. Quinton, … , Avrum Spira, Joseph P. Mizgerd
Published April 2, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI59408.
View: Text | PDF

Hepatocyte-specific mutation of both NF-κB RelA and STAT3 abrogates the acute phase response in mice

  • Text
  • PDF
Abstract

The acute phase response is an evolutionarily conserved reaction in which physiological stress triggers the liver to remodel the blood proteome. Although thought to be involved in immune defense, the net biological effect of the acute phase response remains unknown. As the acute phase response is stimulated by diverse cytokines that activate either NF-κB or STAT3, we hypothesized that it could be eliminated by hepatocyte-specific interruption of both transcription factors. Here, we report that the elimination in mice of both NF-κB p65 (RelA) and STAT3, but neither alone, abrogated all acute phase responses measured. The failure to respond was consistent across multiple different infectious, inflammatory, and noxious stimuli, including pneumococcal pneumonia. When the effects of infection were analyzed in detail, pneumococcal pneumonia was found to alter the expression of over a thousand transcripts in the liver. This outcome was inhibited by the combined loss of RelA and STAT3. Moreover, this interruption of the acute phase response increased mortality and exacerbated bacterial dissemination during pneumonia, possibly as a result of acute humoral enhancement of macrophage opsonophagocytosis, which was impaired in the mutant mice. Thus, we conclude that RelA and STAT3 are essential for stress-induced transcriptional remodeling in the liver and the subsequent activation of the acute phase response, whose functional role includes compartmentalization of local infection.

Authors

Lee J. Quinton, Matthew T. Blahna, Matthew R. Jones, Eri Allen, Joseph D. Ferrari, Kristie L. Hilliard, Xiaoling Zhang, Vishakha Sabharwal, Hana Algül, Shizuo Akira, Roland M. Schmid, Stephen I. Pelton, Avrum Spira, Joseph P. Mizgerd

×

Liver sinusoidal endothelial cell progenitor cells promote liver regeneration in rats
Lin Wang, … , Colin K. Hill, Laurie D. DeLeve
Lin Wang, … , Colin K. Hill, Laurie D. DeLeve
Published March 12, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI58789.
View: Text | PDF

Liver sinusoidal endothelial cell progenitor cells promote liver regeneration in rats

  • Text
  • PDF
Abstract

The ability of the liver to regenerate is crucial to protect liver function after injury and during chronic disease. Increases in hepatocyte growth factor (HGF) in liver sinusoidal endothelial cells (LSECs) are thought to drive liver regeneration. However, in contrast to endothelial progenitor cells, mature LSECs express little HGF. Therefore, we sought to establish in rats whether liver injury causes BM LSEC progenitor cells to engraft in the liver and provide increased levels of HGF and to examine the relative contribution of resident and BM LSEC progenitors. LSEC label-retaining cells and progenitors were identified in liver and LSEC progenitors in BM. BM LSEC progenitors did not contribute to normal LSEC turnover in the liver. However, after partial hepatectomy, BM LSEC progenitor proliferation and mobilization to the circulation doubled. In the liver, one-quarter of the LSECs were BM derived, and BM LSEC progenitors differentiated into fenestrated LSECs. When irradiated rats underwent partial hepatectomy, liver regeneration was compromised, but infusion of LSEC progenitors rescued the defect. Further analysis revealed that BM LSEC progenitors expressed substantially more HGF and were more proliferative than resident LSEC progenitors after partial hepatectomy. Resident LSEC progenitors within their niche may play a smaller role in recovery from partial hepatectomy than BM LSEC progenitors, but, when infused after injury, these progenitors engrafted and expanded markedly over a 2-month period. In conclusion, LSEC progenitor cells are present in liver and BM, and recruitment of BM LSEC progenitors is necessary for normal liver regeneration.

Authors

Lin Wang, Xiangdong Wang, Guanhua Xie, Lei Wang, Colin K. Hill, Laurie D. DeLeve

×

The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation
Mitchell R. McGill, … , Steven C. Curry, Hartmut Jaeschke
Mitchell R. McGill, … , Steven C. Curry, Hartmut Jaeschke
Published March 1, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI59755.
View: Text | PDF

The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation

  • Text
  • PDF
Abstract

Acetaminophen (APAP) overdose is the predominant cause of acute liver failure in the United States. Toxicity begins with a reactive metabolite that binds to proteins. In rodents, this leads to mitochondrial dysfunction and nuclear DNA fragmentation, resulting in necrotic cell death. While APAP metabolism is similar in humans, the later events resulting in toxicity have not been investigated in patients. In this study, levels of biomarkers of mitochondrial damage (glutamate dehydrogenase [GDH] and mitochondrial DNA [mtDNA]) and nuclear DNA fragments were measured in plasma from APAP-overdose patients. Overdose patients with no or minimal hepatic injury who had normal liver function tests (LTs) (referred to herein as the normal LT group) and healthy volunteers served as controls. Peak GDH activity and mtDNA concentration were increased in plasma from patients with abnormal LT. Peak nuclear DNA fragmentation in the abnormal LT cohort was also increased over that of controls. Parallel studies in mice revealed that these plasma biomarkers correlated well with tissue injury. Caspase-3 activity and cleaved caspase-3 were not detectable in plasma from overdose patients or mice, but were elevated after TNF-induced apoptosis, indicating that APAP overdose does not cause apoptosis. Thus, our results suggest that mitochondrial damage and nuclear DNA fragmentation are likely to be critical events in APAP hepatotoxicity in humans, resulting in necrotic cell death.

Authors

Mitchell R. McGill, Matthew R. Sharpe, C. David Williams, Mohammad Taha, Steven C. Curry, Hartmut Jaeschke

×

A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration
Raymond Ng, … , Niels M. Frandsen, Holger Willenbring
Raymond Ng, … , Niels M. Frandsen, Holger Willenbring
Published February 13, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI46039.
View: Text | PDF

A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration

  • Text
  • PDF
Abstract

MicroRNA-21 (miR-21) is thought to be an oncomir because it promotes cancer cell proliferation, migration, and survival. miR-21 is also expressed in normal cells, but its physiological role is poorly understood. Recently, it has been found that miR-21 expression is rapidly induced in rodent hepatocytes during liver regeneration after two-thirds partial hepatectomy (2/3 PH). Here, we investigated the function of miR-21 in regenerating mouse hepatocytes by inhibiting it with an antisense oligonucleotide. To maintain normal hepatocyte viability and function, we antagonized the miR-21 surge induced by 2/3 PH while preserving baseline expression. We found that knockdown of miR-21 impaired progression of hepatocytes into S phase of the cell cycle, mainly through a decrease in levels of cyclin D1 protein, but not Ccnd1 mRNA. Mechanistically, we discovered that increased miR-21 expression facilitated cyclin D1 translation in the early phase of liver regeneration by relieving Akt1/mTOR complex 1 signaling (and thus eIF-4F–mediated translation initiation) from suppression by Rhob. Our findings reveal that miR-21 enables rapid hepatocyte proliferation during liver regeneration by accelerating cyclin D1 translation.

Authors

Raymond Ng, Guisheng Song, Garrett R. Roll, Niels M. Frandsen, Holger Willenbring

×

Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver
Evita van de Steeg, … , Milan Jirsa, Alfred H. Schinkel
Evita van de Steeg, … , Milan Jirsa, Alfred H. Schinkel
Published January 9, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI59526.
View: Text | PDF

Complete OATP1B1 and OATP1B3 deficiency causes human Rotor syndrome by interrupting conjugated bilirubin reuptake into the liver

  • Text
  • PDF
Abstract

Bilirubin, a breakdown product of heme, is normally glucuronidated and excreted by the liver into bile. Failure of this system can lead to a buildup of conjugated bilirubin in the blood, resulting in jaundice. The mechanistic basis of bilirubin excretion and hyperbilirubinemia syndromes is largely understood, but that of Rotor syndrome, an autosomal recessive disorder characterized by conjugated hyperbilirubinemia, coproporphyrinuria, and near-absent hepatic uptake of anionic diagnostics, has remained enigmatic. Here, we analyzed 8 Rotor-syndrome families and found that Rotor syndrome was linked to mutations predicted to cause complete and simultaneous deficiencies of the organic anion transporting polypeptides OATP1B1 and OATP1B3. These important detoxification-limiting proteins mediate uptake and clearance of countless drugs and drug conjugates across the sinusoidal hepatocyte membrane. OATP1B1 polymorphisms have previously been linked to drug hypersensitivities. Using mice deficient in Oatp1a/1b and in the multispecific sinusoidal export pump Abcc3, we found that Abcc3 secretes bilirubin conjugates into the blood, while Oatp1a/1b transporters mediate their hepatic reuptake. Transgenic expression of human OATP1B1 or OATP1B3 restored the function of this detoxification-enhancing liver-blood shuttle in Oatp1a/1b-deficient mice. Within liver lobules, this shuttle may allow flexible transfer of bilirubin conjugates (and probably also drug conjugates) formed in upstream hepatocytes to downstream hepatocytes, thereby preventing local saturation of further detoxification processes and hepatocyte toxic injury. Thus, disruption of hepatic reuptake of bilirubin glucuronide due to coexisting OATP1B1 and OATP1B3 deficiencies explains Rotor-type hyperbilirubinemia. Moreover, OATP1B1 and OATP1B3 null mutations may confer substantial drug toxicity risks.

Authors

Evita van de Steeg, Viktor Stránecký, Hana Hartmannová, Lenka Nosková, Martin Hřebíček, Els Wagenaar, Anita van Esch, Dirk R. de Waart, Ronald P.J. Oude Elferink, Kathryn E. Kenworthy, Eva Sticová, Mohammad al-Edreesi, A.S. Knisely, Stanislav Kmoch, Milan Jirsa, Alfred H. Schinkel

×

Gadd45β is an inducible coactivator of transcription that facilitates rapid liver growth in mice
Jianmin Tian, … , Amedeo Columbano, Joseph Locker
Jianmin Tian, … , Amedeo Columbano, Joseph Locker
Published October 3, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI38760.
View: Text | PDF

Gadd45β is an inducible coactivator of transcription that facilitates rapid liver growth in mice

  • Text
  • PDF
Abstract

The growth arrest and DNA damage–inducible 45 (Gadd45) proteins act in many cellular processes. In the liver, Gadd45b (encoding Gadd45β) is the gene most strongly induced early during both compensatory regeneration and drug-induced hyperplasia. The latter response is associated with the dramatic and rapid hepatocyte growth that follows administration of the xenobiotic TCPOBOP (1,4-bis[2-(3,5)-dichoropyridyloxy] benzene), a ligand of the nuclear receptor constitutive androstane receptor (CAR). Here, we have shown that Gadd45b–/– mice have intact proliferative responses following administration of a single dose of TCPOBOP, but marked growth delays. Moreover, early transcriptional stimulation of CAR target genes was weaker in Gadd45b–/– mice than in wild-type animals, and more genes were downregulated. Gadd45β was then found to have a direct role in transcription by physically binding to CAR, and TCPOBOP treatment caused both proteins to localize to a regulatory element for the CAR target gene cytochrome P450 2b10 (Cyp2b10). Further analysis defined separate Gadd45β domains that mediated binding to CAR and transcriptional activation. Although baseline hepatic expression of Gadd45b was broadly comparable to that of other coactivators, its 140-fold stimulation by TCPOBOP was striking and unique. The induction of Gadd45β is therefore a response that facilitates increased transcription, allowing rapid expansion of liver mass for protection against xenobiotic insults.

Authors

Jianmin Tian, Haiyan Huang, Barbara Hoffman, Dan A. Liebermann, Giovanna M. Ledda-Columbano, Amedeo Columbano, Joseph Locker

×

Increases in p53 expression induce CTGF synthesis by mouse and human hepatocytes and result in liver fibrosis in mice
Takahiro Kodama, … , Masaki Mori, Norio Hayashi
Takahiro Kodama, … , Masaki Mori, Norio Hayashi
Published July 11, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI44957.
View: Text | PDF

Increases in p53 expression induce CTGF synthesis by mouse and human hepatocytes and result in liver fibrosis in mice

  • Text
  • PDF
Abstract

The tumor suppressor p53 has been implicated in the pathogenesis of non-cancer-related conditions such as insulin resistance, cardiac failure, and early aging. In addition, accumulation of p53 has been observed in the hepatocytes of individuals with fibrotic liver diseases, but the significance of this is not known. Herein, we have mechanistically linked p53 activation in hepatocytes to liver fibrosis. Hepatocyte-specific deletion in mice of the gene encoding Mdm2, a protein that promotes p53 degradation, led to hepatocyte synthesis of connective tissue growth factor (CTGF; the hepatic fibrogenic master switch), increased hepatocyte apoptosis, and spontaneous liver fibrosis; concurrent removal of p53 completely abolished this phenotype. Compared with wild-type controls, mice with hepatocyte-specific p53 deletion exhibited similar levels of hepatocyte apoptosis but decreased liver fibrosis and hepatic CTGF expression in two models of liver fibrosis. The clinical significance of these data was highlighted by two observations. First, p53 upregulated CTGF in a human hepatocellular carcinoma cell line by repressing miR-17-92. Second, human liver samples showed a correlation between CTGF and p53-regulated gene expression, which were both increased in fibrotic livers. This study reveals that p53 induces CTGF expression and promotes liver fibrosis, suggesting that the p53/CTGF pathway may be a therapeutic target in the treatment of liver fibrosis.

Authors

Takahiro Kodama, Tetsuo Takehara, Hayato Hikita, Satoshi Shimizu, Minoru Shigekawa, Hinako Tsunematsu, Wei Li, Takuya Miyagi, Atsushi Hosui, Tomohide Tatsumi, Hisashi Ishida, Tatsuya Kanto, Naoki Hiramatsu, Satoshi Kubota, Masaharu Takigawa, Yoshito Tomimaru, Akira Tomokuni, Hiroaki Nagano, Yuichiro Doki, Masaki Mori, Norio Hayashi

×

S6 kinase 1 is required for rapamycin-sensitive liver proliferation after mouse hepatectomy
Catherine Espeillac, … , Chantal Desdouets, Mario Pende
Catherine Espeillac, … , Chantal Desdouets, Mario Pende
Published June 1, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI44203.
View: Text | PDF

S6 kinase 1 is required for rapamycin-sensitive liver proliferation after mouse hepatectomy

  • Text
  • PDF
Abstract

Rapamycin is an antibiotic inhibiting eukaryotic cell growth and proliferation by acting on target of rapamycin (TOR) kinase. Mammalian TOR (mTOR) is thought to work through 2 independent complexes to regulate cell size and cell replication, and these 2 complexes show differential sensitivity to rapamycin. Here we combine functional genetics and pharmacological treatments to analyze rapamycin-sensitive mTOR substrates that are involved in cell proliferation and tissue regeneration after partial hepatectomy in mice. After hepatectomy, hepatocytes proliferated rapidly, correlating with increased S6 kinase phosphorylation, while treatment with rapamycin derivatives impaired regeneration and blocked S6 kinase activation. In addition, genetic deletion of S6 kinase 1 (S6K1) caused a delay in S phase entry in hepatocytes after hepatectomy. The proliferative defect of S6K1-deficient hepatocytes was cell autonomous, as it was also observed in primary cultures and hepatic overexpression of S6K1-rescued proliferation. We found that S6K1 controlled steady-state levels of cyclin D1 (Ccnd1) mRNA in liver, and cyclin D1 expression was required to promote hepatocyte cell cycle. Notably, in vivo overexpression of cyclin D1 was sufficient to restore the proliferative capacity of S6K-null livers. The identification of an S6K1-dependent mechanism participating in cell proliferation in vivo may be relevant for cancer cells displaying high mTOR complex 1 activity and cyclin D1 accumulation.

Authors

Catherine Espeillac, Claudia Mitchell, Séverine Celton-Morizur, Céline Chauvin, Vonda Koka, Cynthia Gillet, Jeffrey H. Albrecht, Chantal Desdouets, Mario Pende

×
  • ← Previous
  • 1
  • 2
  • …
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • Next →
Tracing biliary cells in liver repair
Simone Jörs, Petia Jeliazkova, and colleagues demonstrate that the ductal compartment is not the main source of liver progenitor cells in response to hepatic injury…
Published April 27, 2015
Scientific Show StopperHepatology

The regenerating liver
Claus Kordes and colleagues demonstrate that hepatic stellate cells contribute to liver regeneration…
Published November 17, 2014
Scientific Show StopperHepatology
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts