Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Cell biology

  • 376 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 21
  • 22
  • 23
  • …
  • 37
  • 38
  • Next →
Norepinephrine metabolite DOPEGAL activates AEP and pathological Tau aggregation in locus coeruleus
Seong Su Kang, … , David Weinshenker, Keqiang Ye
Seong Su Kang, … , David Weinshenker, Keqiang Ye
Published December 3, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI130513.
View: Text | PDF

Norepinephrine metabolite DOPEGAL activates AEP and pathological Tau aggregation in locus coeruleus

  • Text
  • PDF
Abstract

Aberrant Tau inclusions in the locus coeruleus (LC) are the earliest detectable Alzheimer’s disease–like (AD-like) neuropathology in the human brain. However, why LC neurons are selectively vulnerable to developing early Tau pathology and degenerating later in disease and whether the LC might seed the stereotypical spread of Tau pathology to the rest of the brain remain unclear. Here, we show that 3,4-dihydroxyphenylglycolaldehyde, which is produced exclusively in noradrenergic neurons by monoamine oxidase A metabolism of norepinephrine, activated asparagine endopeptidase that cleaved Tau at residue N368 into aggregation- and propagation-prone forms, thus leading to LC degeneration and the spread of Tau pathology. Activation of asparagine endopeptidase–cleaved Tau aggregation in vitro and in intact cells was triggered by 3,4-dihydroxyphenylglycolaldehyde, resulting in LC neurotoxicity and propagation of pathology to the forebrain. Thus, our findings reveal that norepinephrine metabolism and Tau cleavage represent the specific molecular mechanism underlying the selective vulnerability of LC neurons in AD.

Authors

Seong Su Kang, Xia Liu, Eun Hee Ahn, Jie Xiang, Fredric P. Manfredsson, Xifei Yang, Hongbo R. Luo, L. Cameron Liles, David Weinshenker, Keqiang Ye

×

Deregulating MYC in a model of HER2+ breast cancer mimics human intertumoral heterogeneity
Tyler Risom, … , Christiane V. Löhr, Rosalie C. Sears
Tyler Risom, … , Christiane V. Löhr, Rosalie C. Sears
Published November 25, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI126390.
View: Text | PDF

Deregulating MYC in a model of HER2+ breast cancer mimics human intertumoral heterogeneity

  • Text
  • PDF
Abstract

The c-MYC (MYC) oncoprotein is often overexpressed in human breast cancer; however, its role in driving disease phenotypes is poorly understood. Here, we investigate the role of MYC in HER2+ disease, examining the relationship between HER2 expression and MYC phosphorylation in HER2+ patient tumors and characterizing the functional effects of deregulating MYC expression in the murine NeuNT model of amplified-HER2 breast cancer. Deregulated MYC alone was not tumorigenic, but coexpression with NeuNT resulted in increased MYC Ser62 phosphorylation and accelerated tumorigenesis. The resulting tumors were metastatic and associated with decreased survival compared with NeuNT alone. MYC;NeuNT tumors had increased intertumoral heterogeneity including a subtype of tumors not observed in NeuNT tumors, which showed distinct metaplastic histology and worse survival. The distinct subtypes of MYC;NeuNT tumors match existing subtypes of amplified-HER2, estrogen receptor–negative human tumors by molecular expression, identifying the preclinical utility of this murine model to interrogate subtype-specific differences in amplified-HER2 breast cancer. We show that these subtypes have differential sensitivity to clinical HER2/EGFR–targeted therapeutics, but small-molecule activators of PP2A, the phosphatase that regulates MYC Ser62 phosphorylation, circumvents these subtype-specific differences and ubiquitously suppresses tumor growth, demonstrating the therapeutic utility of this approach in targeting deregulated MYC breast cancers.

Authors

Tyler Risom, Xiaoyan Wang, Juan Liang, Xiaoli Zhang, Carl Pelz, Lydia G. Campbell, Jenny Eng, Koei Chin, Caroline Farrington, Goutham Narla, Ellen M. Langer, Xiao-Xin Sun, Yulong Su, Colin J. Daniel, Mu-Shui Dai, Christiane V. Löhr, Rosalie C. Sears

×

Shortened TDP43 isoforms upregulated by neuronal hyperactivity drive TDP43 pathology in ALS
Kaitlin Weskamp, … , Jemeen Sreedharan, Sami J. Barmada
Kaitlin Weskamp, … , Jemeen Sreedharan, Sami J. Barmada
Published November 12, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI130988.
View: Text | PDF

Shortened TDP43 isoforms upregulated by neuronal hyperactivity drive TDP43 pathology in ALS

  • Text
  • PDF
Abstract

Neuronal hyperexcitability and cytoplasmic mislocalization of the nuclear RNA binding proteinTDP43 are universal features in amyotrophic lateral sclerosis (ALS), but the relationship between these phenomena remains poorly defined. Here, we show that neuronal hyperexcitability drives TDP43 pathology by upregulating shortened (s)TDP43 splice variants missing the canonical C-terminus. sTDP43 isoforms preferentially accumulate in the cytoplasm,forming insoluble inclusions that sequester full-length TDP43 via preserved N-terminal interactions. Consistent with these findings, sTDP43 overexpression is highly toxic to mammalian neurons, suggesting that neurodegeneration results from complementary gain- and loss-of-function mechanisms. In humans and mice, sTDP43 transcripts are significantly enriched in vulnerable motor neurons, and we observed a striking accumulation of sTDP43 protein within neurons and glia of ALS patients. These studies uncover a hitherto unknown role of alternative TDP43 splice isoforms in ALS, and indicate that sTDP43 production may be a key contributor to the susceptibility of motor neurons in ALS.

Authors

Kaitlin Weskamp, Elizabeth M. Tank, Roberto Miguez, Jonathon P. McBride, Nicolás B. Gómez, Matthew White, Ziqiang Lin, Carmen Moreno Gonzalez, Andrea Serio, Jemeen Sreedharan, Sami J. Barmada

×

Loss of ARPC1B impairs cytotoxic T lymphocyte maintenance and cytolytic activity
Lyra O. Randzavola, … , Taco W. Kuijpers, Gillian M. Griffiths
Lyra O. Randzavola, … , Taco W. Kuijpers, Gillian M. Griffiths
Published November 11, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129388.
View: Text | PDF

Loss of ARPC1B impairs cytotoxic T lymphocyte maintenance and cytolytic activity

  • Text
  • PDF
Abstract

CD8 cytotoxic T lymphocytes (CTLs) rely on rapid reorganization of the branched F-actin network to drive the polarized secretion of lytic granules, initiating target cell death during the adaptive immune response. Branched F-actin is generated by the nucleation factor actin-related protein 2/3 (Arp2/3) complex. Patients with mutations in the actin-related protein complex 1B (ARPC1B) subunit of Arp2/3 show combined immunodeficiency, with symptoms of immune dysregulation, including recurrent viral infections and reduced CD8+ T cell count. Here, we show that loss of ARPC1B led to loss of CTL cytotoxicity, with the defect arising at 2 different levels. First, ARPC1B is required for lamellipodia formation, cell migration, and actin reorganization across the immune synapse. Second, we found that ARPC1B is indispensable for the maintenance of TCR, CD8, and GLUT1 membrane proteins at the plasma membrane of CTLs, as recycling via the retromer and WASH complexes was impaired in the absence of ARPC1B. Loss of TCR, CD8, and GLUT1 gave rise to defects in T cell signaling and proliferation upon antigen stimulation of ARPC1B-deficient CTLs, leading to a progressive loss of CD8+ T cells. This triggered an activation-induced immunodeficiency of CTL activity in ARPC1B-deficient patients, which could explain the susceptibility to severe and prolonged viral infections.

Authors

Lyra O. Randzavola, Katharina Strege, Marie Juzans, Yukako Asano, Jane C. Stinchcombe, Christian M. Gawden-Bone, Matthew N.J. Seaman, Taco W. Kuijpers, Gillian M. Griffiths

×

Correcting Smad1/5/8, mTOR, and VEGFR2 treats pathology in hereditary hemorrhagic telangiectasia models
Santiago Ruiz, … , Fabien Campagne, Philippe Marambaud
Santiago Ruiz, … , Fabien Campagne, Philippe Marambaud
Published November 5, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127425.
View: Text | PDF

Correcting Smad1/5/8, mTOR, and VEGFR2 treats pathology in hereditary hemorrhagic telangiectasia models

  • Text
  • PDF
Abstract

Hereditary hemorrhagic telangiectasia (HHT), a genetic bleeding disorder leading to systemic arteriovenous malformations (AVMs), is caused by loss-of-function mutations in the ALK1-ENG-Smad1/5/8 pathway. Evidence suggests that HHT pathogenesis strongly relies on overactivated PI3K-Akt-mTOR and VEGFR2 pathways in endothelial cells (ECs). In the BMP9/10-immunoblocked (BMP9/10ib) neonatal mouse model of HHT, we report here that the mTOR inhibitor, sirolimus, and the receptor tyrosine-kinase inhibitor, nintedanib, could synergistically fully block, but also reversed, retinal AVMs to avert retinal bleeding and anemia. Sirolimus plus nintedanib prevented vascular pathology in the oral mucosa, lungs, and liver of the BMP9/10ib mice, as well as significantly reduced gastrointestinal bleeding and anemia in inducible ALK1-deficient adult mice. Mechanistically, in vivo in BMP9/10ib mouse ECs, sirolimus and nintedanib blocked the overactivation of mTOR and VEGFR2, respectively. Furthermore, we found that sirolimus activated ALK2-mediated Smad1/5/8 signaling in primary ECs—including in HHT patient blood outgrowth ECs—and partially rescued Smad1/5/8 activity in vivo in BMP9/10ib mouse ECs. These data demonstrate that the combined correction of endothelial Smad1/5/8, mTOR, and VEGFR2 pathways opposes HHT pathogenesis. Repurposing of sirolimus plus nintedanib might provide therapeutic benefit in HHT patients.

Authors

Santiago Ruiz, Haitian Zhao, Pallavi Chandakkar, Julien Papoin, Hyunwoo Choi, Aya Nomura-Kitabayashi, Radhika Patel, Matthew Gillen, Li Diao, Prodyot K. Chatterjee, Mingzhu He, Yousef Al-Abed, Ping Wang, Christine N. Metz, S. Paul Oh, Lionel Blanc, Fabien Campagne, Philippe Marambaud

×

Slowing ribosome velocity restores folding and function of mutant CFTR
Kathryn E. Oliver, … , Zoya Ignatova, Eric J. Sorscher
Kathryn E. Oliver, … , Zoya Ignatova, Eric J. Sorscher
Published October 28, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI124282.
View: Text | PDF

Slowing ribosome velocity restores folding and function of mutant CFTR

  • Text
  • PDF
Abstract

Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), with approximately 90% of patients harboring at least one copy of the disease-associated variant F508del. We utilized a yeast phenomic system to identify genetic modifiers of F508del-CFTR biogenesis, from which ribosomal protein L12 (RPL12/uL11) emerged as a molecular target. In the present study, we investigated mechanism(s) by which suppression of RPL12 rescues F508del protein synthesis and activity. Using ribosome profiling, we found that rates of translation initiation and elongation were markedly slowed by RPL12 silencing. However, proteolytic stability and patch-clamp assays revealed RPL12 depletion significantly increased F508del-CFTR steady-state expression, interdomain assembly, and baseline open-channel probability. We next evaluated whether Rpl12-corrected F508del-CFTR could be further enhanced with concomitant pharmacologic repair (e.g., using clinically approved modulators lumacaftor and tezacaftor) and demonstrated additivity of these treatments. Rpl12 knockdown also partially restored maturation of specific CFTR variants in addition to F508del, and WT Cftr biogenesis was enhanced in the pancreas, colon, and ileum of Rpl12 haplosufficient mice. Modulation of ribosome velocity therefore represents a robust method for understanding both CF pathogenesis and therapeutic response.

Authors

Kathryn E. Oliver, Robert Rauscher, Marjolein Mijnders, Wei Wang, Matthew J. Wolpert, Jessica Maya, Carleen M. Sabusap, Robert A. Kesterson, Kevin L. Kirk, Andras Rab, Ineke Braakman, Jeong S. Hong, John L. Hartman IV, Zoya Ignatova, Eric J. Sorscher

×

Integrin α5β1 regulates PP2A complex assembly through PDE4D in atherosclerosis
Sanguk Yun, … , David C. Pallas, Martin A. Schwartz
Sanguk Yun, … , David C. Pallas, Martin A. Schwartz
Published August 13, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127692.
View: Text | PDF

Integrin α5β1 regulates PP2A complex assembly through PDE4D in atherosclerosis

  • Text
  • PDF
Abstract

Fibronectin in the vascular wall promotes inflammatory activation of the endothelium during vascular remodeling and atherosclerosis. These effects are mediated in part by fibronectin binding to integrin α5, which recruits and activates phosphodiesterase 4D5 (PDE4D5) by inducing its dephosphorylation on an inhibitory site Ser651. Active PDE then hydrolyzes anti-inflammatory cAMP to facilitate inflammatory signaling. To test this model in vivo, we mutated the integrin binding site in PDE4D5 in mice. This mutation reduced endothelial inflammatory activation in athero-prone regions of arteries, and, in a hyperlipidemia model, reduced atherosclerotic plaque size while increasing markers of plaque stability. We then investigated the mechanism of PDE4D5 activation. Proteomics identified the PP2A regulatory subunit B55α as the factor recruiting PP2A to PDE4D5. The B55α-PP2A complex localized to adhesions and directly dephosphorylated PDE4D5. This interaction also unexpectedly stabilized the PP2A-B55α complex. The integrin-regulated, pro-atherosclerotic transcription factor Yap is also dephosphorylated and activated through this pathway. PDE4D5 therefore mediates matrix-specific regulation of EC phenotype via an unconventional adapter role, assembling and anchoring a multifunctional PP2A complex with other targets. These results are likely to have widespread consequences for control of cell function by integrins.

Authors

Sanguk Yun, Rui Hu, Melanie E. Schwaemmle, Alexander N. Scherer, Zhenwu Zhuang, Anthony J. Koleske, David C. Pallas, Martin A. Schwartz

×

Nuclear envelope-localized torsinA-LAP1 complex regulates hepatic VLDL secretion and steatosis
Ji-Yeon Shin, … , Henry N. Ginsberg, Howard J. Worman
Ji-Yeon Shin, … , Henry N. Ginsberg, Howard J. Worman
Published August 13, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129769.
View: Text | PDF

Nuclear envelope-localized torsinA-LAP1 complex regulates hepatic VLDL secretion and steatosis

  • Text
  • PDF
Abstract

Deciphering novel pathways regulating liver lipid content has profound implications for understanding the pathophysiology of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Recent evidence suggests that the nuclear envelope is a site of regulation of lipid metabolism but there is limited appreciation of the responsible mechanisms and molecular components within this organelle. We showed that conditional hepatocyte deletion of the inner nuclear membrane protein lamina-associated polypeptide 1 (LAP1) caused defective VLDL secretion and steatosis, including intranuclear lipid accumulation. LAP1 binds to and activates torsinA, an AAA+ ATPase that resides in the perinuclear space and continuous main ER. Deletion of torsinA from mouse hepatocytes caused even greater reductions in VLDL secretion and profound steatosis. Both of these mutant mouse lines developed hepatic steatosis and subsequent steatohepatitis on a regular chow diet in the absence of whole-body insulin resistance or obesity. Our results establish an essential role for the nuclear envelope-localized torsinA-LAP1 complex in hepatic VLDL secretion and suggest that the torsinA pathway participates in the pathophysiology of nonalcoholic fatty liver disease.

Authors

Ji-Yeon Shin, Antonio Hernandez-Ono, Tatyana Fedotova, Cecilia Östlund, Michael J. Lee, Sarah B. Gibeley, Chun-Chi Liang, William T. Dauer, Henry N. Ginsberg, Howard J. Worman

×

JMJD3 regulates CD4 T cell trafficking by targeting actin cytoskeleton regulatory gene Pdlim4
Chuntang Fu, … , Helen Y. Wang, Rong-Fu Wang
Chuntang Fu, … , Helen Y. Wang, Rong-Fu Wang
Published August 8, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI128293.
View: Text | PDF

JMJD3 regulates CD4 T cell trafficking by targeting actin cytoskeleton regulatory gene Pdlim4

  • Text
  • PDF
Abstract

Histone H3K27 demethylase, JMJD3 plays a critical role in gene expression and T-cell differentiation. However, the role and mechanisms of JMJD3 in T cell trafficking remain poorly understood. Here we show that JMJD3 deficiency in CD4+ T cells resulted in an accumulation of T cells in the thymus, and reduction of T cell number in the secondary lymphoid organs. We identified PDLIM4 as a significantly down-regulated target gene in JMJD3-deficient CD4+ T cells by gene profiling and ChIP-seq analyses. We further showed that PDLIM4 functioned as an adaptor protein to interact with S1P1 and filamentous actin (F-actin), thus serving as a key regulator of T cell trafficking. Mechanistically, JMJD3 bound to the promoter and gene body regions of Pdlim4 gene and regulated its expression by interacting with zinc finger transcription factor KLF2. Our findings have identified Pdlim4 as a JMJD3 target gene that affects T-cell trafficking by cooperating with S1P1, and provided insights into the molecular mechanisms by which JMJD3 regulates genes involved in T cell trafficking.

Authors

Chuntang Fu, Qingtian Li, Jia Zou, Changsheng Xing, Mei Luo, Bingnan Yin, Junjun Chu, Jiaming Yu, Xin Liu, Helen Y. Wang, Rong-Fu Wang

×

Elastase 3B mutation links to familial pancreatitis with diabetes and pancreatic adenocarcinoma
Paul C. Moore, … , Mark Anderson, Scott A. Oakes
Paul C. Moore, … , Mark Anderson, Scott A. Oakes
Published August 1, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI129961.
View: Text | PDF

Elastase 3B mutation links to familial pancreatitis with diabetes and pancreatic adenocarcinoma

  • Text
  • PDF
Abstract

While improvements in genetic analysis have greatly enhanced our understanding of the mechanisms behind pancreatitis, it continues to afflict many families for whom the hereditary factors remain unknown. Recent evaluation of a patient with a strong family history of pancreatitis sparked us to reexamine a large kindred originally reported over 50 years ago with an autosomal dominant inheritance pattern of chronic pancreatitis, diabetes and pancreatic adenocarcinoma. Whole exome sequencing analysis identified a rare missense mutation in the gene encoding pancreas-specific protease Elastase 3B (CELA3B) that cosegregates with disease. Studies of the mutant protein in vitro, in cell lines and in CRISPR-Cas9 engineered mice indicate that this mutation causes translational upregulation of CELA3B, which upon secretion and activation by trypsin leads to uncontrolled proteolysis and recurrent pancreatitis. Although lesions in several other pancreatitic proteases have been previously linked to hereditary pancreatitis, this is the first known instance of a mutation in CELA3B and a defect in translational control contributing to this disease.

Authors

Paul C. Moore, Jessica T. Cortez, Chester E. Chamberlain, Diana Alba, Amy C. Berger, Zoe Quandt, Alice Chan, Mickie H. Cheng, Jhoanne L. Bautista, Justin Peng, Michael S. German, Mark Anderson, Scott A. Oakes

×
  • ← Previous
  • 1
  • 2
  • …
  • 21
  • 22
  • 23
  • …
  • 37
  • 38
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts