Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Gut-derived bacterial toxins and HIV-1 infection

In this episode, Souheil-Antoine Younes explains that their findings propose that toxic solutes from the gut bacterial flora may impair CD4+ T cell recovery during ART and may contribute to CD4+ T cell lymphopenia characteristic of INRs.

Published May 2, 2022, by Megan Jenkins

Author's Take

Related articles

Gut-derived bacterial toxins impair memory CD4+ T cell mitochondrial function in HIV-1 infection
Brian Ferrari, … , Rafick-Pierre Sekaly, Souheil-Antoine Younes
Brian Ferrari, … , Rafick-Pierre Sekaly, Souheil-Antoine Younes
Published March 22, 2022
Citation Information: J Clin Invest. 2022;132(9):e149571. https://doi.org/10.1172/JCI149571.
View: Text | PDF
Research Article AIDS/HIV Infectious disease

Gut-derived bacterial toxins impair memory CD4+ T cell mitochondrial function in HIV-1 infection

  • Text
  • PDF
Abstract

People living with HIV (PLWH) who are immune nonresponders (INRs) are at greater risk of comorbidity and mortality than are immune responders (IRs) who restore their CD4+ T cell count after antiretroviral therapy (ART). INRs have low CD4+ T cell counts (<350 c/μL), heightened systemic inflammation, and increased CD4+ T cell cycling (Ki67+). Here, we report the findings that memory CD4+ T cells and plasma samples of INRs from several cohorts are enriched in gut-derived bacterial solutes p-cresol sulfate (PCS) and indoxyl sulfate (IS) that both negatively correlated with CD4+ T cell counts. In vitro PCS or IS blocked CD4+ T cell proliferation, induced apoptosis, and diminished the expression of mitochondrial proteins. Electron microscopy imaging revealed perturbations of mitochondrial networks similar to those found in INRs following incubation of healthy memory CD4+ T cells with PCS. Using bacterial 16S rDNA, INR stool samples were found enriched in proteolytic bacterial genera that metabolize tyrosine and phenylalanine to produce PCS. We propose that toxic solutes from the gut bacterial flora may impair CD4+ T cell recovery during ART and may contribute to CD4+ T cell lymphopenia characteristic of INRs.

Authors

Brian Ferrari, Amanda Cabral Da Silva, Ken H. Liu, Evgeniya V. Saidakova, Larisa B. Korolevskaya, Konstantin V. Shmagel, Carey Shive, Gabriela Pacheco Sanchez, Mauricio Retuerto, Ashish Arunkumar Sharma, Khader Ghneim, Laura Noel-Romas, Benigno Rodriguez, Mahmoud A. Ghannoum, Peter P. Hunt, Steven G. Deeks, Adam D. Burgener, Dean P. Jones, Mirela A. Dobre, Vincent C. Marconi, Rafick-Pierre Sekaly, Souheil-Antoine Younes

×
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts