Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Metabolism

  • 631 Articles
  • 2 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 60
  • 61
  • 62
  • 63
  • 64
  • Next →
Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance
Haiyan Xu, … , Louis A. Tartaglia, Hong Chen
Haiyan Xu, … , Louis A. Tartaglia, Hong Chen
Published December 15, 2003
Citation Information: J Clin Invest. 2003;112(12):1821-1830. https://doi.org/10.1172/JCI19451.
View: Text | PDF

Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance

  • Text
  • PDF
Abstract

Insulin resistance arises from the inability of insulin to act normally in regulating nutrient metabolism in peripheral tissues. Increasing evidence from human population studies and animal research has established correlative as well as causative links between chronic inflammation and insulin resistance. However, the underlying molecular pathways are largely unknown. In this report, we show that many inflammation and macrophage-specific genes are dramatically upregulated in white adipose tissue (WAT) in mouse models of genetic and high-fat diet-induced obesity (DIO). The upregulation is progressively increased in WAT of mice with DIO and precedes a dramatic increase in circulating-insulin level. Upon treatment with rosiglitazone, an insulin-sensitizing drug, these macrophage-originated genes are downregulated. Histologically, there is evidence of significant infiltration of macrophages, but not neutrophils and lymphocytes, into WAT of obese mice, with signs of adipocyte lipolysis and formation of multinucleate giant cells. These data suggest that macrophages in WAT play an active role in morbid obesity and that macrophage-related inflammatory activities may contribute to the pathogenesis of obesity-induced insulin resistance. We propose that obesity-related insulin resistance is, at least in part, a chronic inflammatory disease initiated in adipose tissue.

Authors

Haiyan Xu, Glenn T. Barnes, Qing Yang, Guo Tan, Daseng Yang, Chieh J. Chou, Jason Sole, Andrew Nichols, Jeffrey S. Ross, Louis A. Tartaglia, Hong Chen

×

Superoxide-mediated activation of uncoupling protein 2 causes pancreatic β cell dysfunction
Stefan Krauss, … , Shane T. Grey, Bradford B. Lowell
Stefan Krauss, … , Shane T. Grey, Bradford B. Lowell
Published December 15, 2003
Citation Information: J Clin Invest. 2003;112(12):1831-1842. https://doi.org/10.1172/JCI19774.
View: Text | PDF

Superoxide-mediated activation of uncoupling protein 2 causes pancreatic β cell dysfunction

  • Text
  • PDF
Abstract

Failure to secrete adequate amounts of insulin in response to increasing concentrations of glucose is an important feature of type 2 diabetes. The mechanism for loss of glucose responsiveness is unknown. Uncoupling protein 2 (UCP2), by virtue of its mitochondrial proton leak activity and consequent negative effect on ATP production, impairs glucose-stimulated insulin secretion. Of interest, it has recently been shown that superoxide, when added to isolated mitochondria, activates UCP2-mediated proton leak. Since obesity and chronic hyperglycemia increase mitochondrial superoxide production, as well as UCP2 expression in pancreatic β cells, a superoxide-UCP2 pathway could contribute importantly to obesity- and hyperglycemia-induced β cell dysfunction. This study demonstrates that endogenously produced mitochondrial superoxide activates UCP2-mediated proton leak, thus lowering ATP levels and impairing glucose-stimulated insulin secretion. Furthermore, hyperglycemia- and obesity-induced loss of glucose responsiveness is prevented by reduction of mitochondrial superoxide production or gene knockout of UCP2. Importantly, reduction of superoxide has no beneficial effect in the absence of UCP2, and superoxide levels are increased further in the absence of UCP2, demonstrating that the adverse effects of superoxide on β cell glucose sensing are caused by activation of UCP2. Therefore, superoxide-mediated activation of UCP2 could play an important role in the pathogenesis of β cell dysfunction and type 2 diabetes.

Authors

Stefan Krauss, Chen-Yu Zhang, Luca Scorrano, Louise T. Dalgaard, Julie St-Pierre, Shane T. Grey, Bradford B. Lowell

×

Upregulation of insulin receptor substrate-2 in pancreatic β cells prevents diabetes
Anita M. Hennige, … , Mahmud Mossa-Basha, Morris F. White
Anita M. Hennige, … , Mahmud Mossa-Basha, Morris F. White
Published November 15, 2003
Citation Information: J Clin Invest. 2003;112(10):1521-1532. https://doi.org/10.1172/JCI18581.
View: Text | PDF

Upregulation of insulin receptor substrate-2 in pancreatic β cells prevents diabetes

  • Text
  • PDF
Abstract

The insulin receptor substrate-2 (Irs2) branch of the insulin/IGF signaling system coordinates peripheral insulin action and pancreatic β cell function, so mice lacking Irs2 display similarities to humans with type 2 diabetes. Here we show that β cell–specific expression of Irs2 at a low or a high level delivered a graded physiologic response that promoted β cell growth, survival, and insulin secretion that prevented diabetes in Irs2–/– mice, obese mice, and streptozotocin-treated mice; and that upon transplantation, the transgenic islets cured diabetes more effectively than WT islets. Thus, pharmacological approaches that promote Irs2 expression in β cells, especially specific cAMP agonists, could be rational treatments for β cell failure and diabetes.

Authors

Anita M. Hennige, Deborah J. Burks, Umut Ozcan, Rohit N. Kulkarni, Jing Ye, Sunmin Park, Markus Schubert, Tracey L. Fisher, Matt A. Dow, Rebecca Leshan, Mark Zakaria, Mahmud Mossa-Basha, Morris F. White

×

Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells
Xueliang Du, … , Csaba Szabó, Michael Brownlee
Xueliang Du, … , Csaba Szabó, Michael Brownlee
Published October 1, 2003
Citation Information: J Clin Invest. 2003;112(7):1049-1057. https://doi.org/10.1172/JCI18127.
View: Text | PDF

Inhibition of GAPDH activity by poly(ADP-ribose) polymerase activates three major pathways of hyperglycemic damage in endothelial cells

  • Text
  • PDF
Abstract

In this report, we show that hyperglycemia-induced overproduction of superoxide by the mitochondrial electron transport chain activates the three major pathways of hyperglycemic damage found in aortic endothelial cells by inhibiting GAPDH activity. In bovine aortic endothelial cells, GAPDH antisense oligonucleotides activated each of the pathways of hyperglycemic vascular damage in cells cultured in 5 mM glucose to the same extent as that induced by culturing cells in 30 mM glucose. Hyperglycemia-induced GAPDH inhibition was found to be a consequence of poly(ADP-ribosyl)ation of GAPDH by poly(ADP-ribose) polymerase (PARP), which was activated by DNA strand breaks produced by mitochondrial superoxide overproduction. Both the hyperglycemia-induced decrease in activity of GAPDH and its poly(ADP-ribosyl)ation were prevented by overexpression of either uncoupling protein–1 (UCP-1) or manganese superoxide dismutase (MnSOD), which decrease hyperglycemia-induced superoxide. Overexpression of UCP-1 or MnSOD also prevented hyperglycemia-induced DNA strand breaks and activation of PARP. Hyperglycemia-induced activation of each of the pathways of vascular damage was abolished by blocking PARP activity with the competitive PARP inhibitors PJ34 or INO-1001. Elevated glucose increased poly(ADP-ribosyl)ation of GAPDH in WT aortae, but not in the aortae from PARP-1–deficient mice. Thus, inhibition of PARP blocks hyperglycemia-induced activation of multiple pathways of vascular damage.

Authors

Xueliang Du, Takeshi Matsumura, Diane Edelstein, Luciano Rossetti, Zsuzsanna Zsengellér, Csaba Szabó, Michael Brownlee

×

Frataxin deficiency in pancreatic islets causes diabetes due to loss of β cell mass
Michael Ristow, … , Michel Koenig, Andreas F.H. Pfeiffer
Michael Ristow, … , Michel Koenig, Andreas F.H. Pfeiffer
Published August 15, 2003
Citation Information: J Clin Invest. 2003;112(4):527-534. https://doi.org/10.1172/JCI18107.
View: Text | PDF

Frataxin deficiency in pancreatic islets causes diabetes due to loss of β cell mass

  • Text
  • PDF
Abstract

Diabetes is caused by an absolute (type 1) or relative (type 2) deficiency of insulin-producing β cells. We have disrupted expression of the mitochondrial protein frataxin selectively in pancreatic β cells. Mice were born healthy but subsequently developed impaired glucose tolerance progressing to overt diabetes mellitus. These observations were explained by impairment of insulin secretion due to a loss of β cell mass in knockout animals. This phenotype was preceded by elevated levels of reactive oxygen species in knockout islets, an increased frequency of apoptosis, and a decreased number of proliferating β cells. Hence, disruption of the frataxin gene in pancreatic β cells causes diabetes following cellular growth arrest and apoptosis, paralleled by an increase in reactive oxygen species in islets. These observations might provide insight into the deterioration of β cell function observed in different subtypes of diabetes in humans.

Authors

Michael Ristow, Hindrik Mulder, Doreen Pomplun, Tim J. Schulz, Katrin Müller-Schmehl, Anja Krause, Malin Fex, Hélène Puccio, Jörg Müller, Frank Isken, Joachim Spranger, Dirk Müller-Wieland, Mark A. Magnuson, Matthias Möhlig, Michel Koenig, Andreas F.H. Pfeiffer

×

Muscle-specific PPARγ-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones
Andrew W. Norris, … , Bruce M. Spiegelman, C. Ronald Kahn
Andrew W. Norris, … , Bruce M. Spiegelman, C. Ronald Kahn
Published August 15, 2003
Citation Information: J Clin Invest. 2003;112(4):608-618. https://doi.org/10.1172/JCI17305.
View: Text | PDF

Muscle-specific PPARγ-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones

  • Text
  • PDF
Abstract

Activation of peroxisome proliferator-activated receptor γ (PPARγ) by thiazolidinediones (TZDs) improves insulin resistance by increasing insulin-stimulated glucose disposal in skeletal muscle. It remains debatable whether the effect of TZDs on muscle is direct or indirect via adipose tissue. We therefore generated mice with muscle-specific PPARγ knockout (MuPPARγKO) using Cre/loxP recombination. Interestingly, MuPPARγKO mice developed excess adiposity despite reduced dietary intake. Although insulin-stimulated glucose uptake in muscle was not impaired, MuPPARγKO mice had whole-body insulin resistance with a 36% reduction (P < 0.05) in the glucose infusion rate required to maintain euglycemia during hyperinsulinemic clamp, primarily due to dramatic impairment in hepatic insulin action. When placed on a high-fat diet, MuPPARγKO mice developed hyperinsulinemia and impaired glucose homeostasis identical to controls. Simultaneous treatment with TZD ameliorated these high fat–induced defects in MuPPARγKO mice to a degree identical to controls. There was also altered expression of several lipid metabolism genes in the muscle of MuPPARγKO mice. Thus, muscle PPARγ is not required for the antidiabetic effects of TZDs, but has a hitherto unsuspected role for maintenance of normal adiposity, whole-body insulin sensitivity, and hepatic insulin action. The tissue crosstalk mediating these effects is perhaps due to altered lipid metabolism in muscle.

Authors

Andrew W. Norris, Lihong Chen, Simon J. Fisher, Ildiko Szanto, Michael Ristow, Alison C. Jozsi, Michael F. Hirshman, Evan D. Rosen, Laurie J. Goodyear, Frank J. Gonzalez, Bruce M. Spiegelman, C. Ronald Kahn

×

Role of Foxa-2 in adipocyte metabolism and differentiation
Christian Wolfrum, … , C. Ronald Kahn, Markus Stoffel
Christian Wolfrum, … , C. Ronald Kahn, Markus Stoffel
Published August 1, 2003
Citation Information: J Clin Invest. 2003;112(3):345-356. https://doi.org/10.1172/JCI18698.
View: Text | PDF

Role of Foxa-2 in adipocyte metabolism and differentiation

  • Text
  • PDF
Abstract

Hepatocyte nuclear factors-3 (Foxa-1–3) are winged forkhead transcription factors that regulate gene expression in the liver and pancreatic islets and are required for normal metabolism. Here we show that Foxa-2 is expressed in preadipocytes and induced de novo in adipocytes of genetic and diet-induced rodent models of obesity. In preadipocytes Foxa-2 inhibits adipocyte differentiation by activating transcription of the Pref-1 gene. Foxa-2 and Pref-1 expression can be enhanced in primary preadipocytes by growth hormone, suggesting that the antiadipogenic activity of growth hormone is mediated by Foxa-2. In differentiated adipocytes Foxa-2 expression leads to induction of gene expression involved in glucose and fat metabolism, including glucose transporter-4, hexokinase-2, muscle-pyruvate kinase, hormone-sensitive lipase, and uncoupling proteins-2 and -3. Diet-induced obese mice with haploinsufficiency in Foxa-2 (Foxa-2+/–) develop increased adiposity compared with wild-type littermates as a result of decreased energy expenditure. Furthermore, adipocytes of these Foxa-2+/– mice exhibit defects in glucose uptake and metabolism. These data suggest that Foxa-2 plays an important role as a physiological regulator of adipocyte differentiation and metabolism.

Authors

Christian Wolfrum, David Q. Shih, Satoru Kuwajima, Andrew W. Norris, C. Ronald Kahn, Markus Stoffel

×

The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis
Daniela Cota, … , Günter K. Stalla, Uberto Pagotto
Daniela Cota, … , Günter K. Stalla, Uberto Pagotto
Published August 1, 2003
Citation Information: J Clin Invest. 2003;112(3):423-431. https://doi.org/10.1172/JCI17725.
View: Text | PDF

The endogenous cannabinoid system affects energy balance via central orexigenic drive and peripheral lipogenesis

  • Text
  • PDF
Abstract

The cannabinoid receptor type 1 (CB1) and its endogenous ligands, the endocannabinoids, are involved in the regulation of food intake. Here we show that the lack of CB1 in mice with a disrupted CB1 gene causes hypophagia and leanness. As compared with WT (CB1+/+) littermates, mice lacking CB1 (CB1–/–) exhibited reduced spontaneous caloric intake and, as a consequence of reduced total fat mass, decreased body weight. In young CB1–/– mice, the lean phenotype is predominantly caused by decreased caloric intake, whereas in adult CB1–/– mice, metabolic factors appear to contribute to the lean phenotype. No significant differences between genotypes were detected regarding locomotor activity, body temperature, or energy expenditure. Hypothalamic CB1 mRNA was found to be coexpressed with neuropeptides known to modulate food intake, such as corticotropin-releasing hormone (CRH), cocaine-amphetamine–regulated transcript (CART), melanin-concentrating hormone (MCH), and prepro-orexin, indicating a possible role for endocannabinoid receptors within central networks governing appetite. CB1–/– mice showed significantly increased CRH mRNA levels in the paraventricular nucleus and reduced CART mRNA levels in the dorsomedial and lateral hypothalamic areas. CB1 was also detected in epidydimal mouse adipocytes, and CB1-specific activation enhanced lipogenesis in primary adipocyte cultures. Our results indicate that the cannabinoid system is an essential endogenous regulator of energy homeostasis via central orexigenic as well as peripheral lipogenic mechanisms and might therefore represent a promising target to treat diseases characterized by impaired energy balance.

Authors

Daniela Cota, Giovanni Marsicano, Matthias Tschöp, Yvonne Grübler, Cornelia Flachskamm, Mirjam Schubert, Dorothee Auer, Alexander Yassouridis, Christa Thöne-Reineke, Sylvia Ortmann, Federica Tomassoni, Cristina Cervino, Enzo Nisoli, Astrid C.E. Linthorst, Renato Pasquali, Beat Lutz, Günter K. Stalla, Uberto Pagotto

×

Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKBβ
Robert S. Garofalo, … , John D. McNeish, Kevin G. Coleman
Robert S. Garofalo, … , John D. McNeish, Kevin G. Coleman
Published July 15, 2003
Citation Information: J Clin Invest. 2003;112(2):197-208. https://doi.org/10.1172/JCI16885.
View: Text | PDF

Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKBβ

  • Text
  • PDF
Abstract

The serine/threonine kinase Akt/PKB plays key roles in the regulation of cell growth, survival, and metabolism. It remains unclear, however, whether the functions of individual Akt/PKB isoforms are distinct. To investigate the function of Akt2/PKBβ, mice lacking this isoform were generated. Both male and female Akt2/PKBβ-null mice exhibit mild growth deficiency and an age-dependent loss of adipose tissue or lipoatrophy, with all observed adipose depots dramatically reduced by 22 weeks of age. Akt2/PKBβ-deficient mice are insulin resistant with elevated plasma triglycerides. In addition, Akt2/PKBβ-deficient mice exhibit fed and fasting hyperglycemia, hyperinsulinemia, glucose intolerance, and impaired muscle glucose uptake. In males, insulin resistance progresses to a severe form of diabetes accompanied by pancreatic β cell failure. In contrast, female Akt2/PKBβ-deficient mice remain mildly hyperglycemic and hyperinsulinemic until at least one year of age. Thus, Akt2/PKBβ-deficient mice exhibit growth deficiency similar to that reported previously for mice lacking Akt1/PKBα, indicating that both Akt2/PKBβ and Akt1/PKBα participate in the regulation of growth. The marked hyperglycemia and loss of pancreatic β cells and adipose tissue in Akt2/PKBβ-deficient mice suggest that Akt2/PKBβ plays critical roles in glucose metabolism and the development or maintenance of proper adipose tissue and islet mass for which other Akt/PKB isoforms are unable to fully compensate.

Authors

Robert S. Garofalo, Stephen J. Orena, Kristina Rafidi, Anthony J. Torchia, Jeffrey L. Stock, Audrey L. Hildebrandt, Timothy Coskran, Shawn C. Black, Dominique J. Brees, Joan R. Wicks, John D. McNeish, Kevin G. Coleman

×

GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor–stimulated muscle glucose utilization
Rémy Burcelin, … , Peter Vollenweider, Bernard Thorens
Rémy Burcelin, … , Peter Vollenweider, Bernard Thorens
Published May 15, 2003
Citation Information: J Clin Invest. 2003;111(10):1555-1562. https://doi.org/10.1172/JCI16888.
View: Text | PDF

GLUT4, AMP kinase, but not the insulin receptor, are required for hepatoportal glucose sensor–stimulated muscle glucose utilization

  • Text
  • PDF
Abstract

Recent evidence suggests the existence of a hepatoportal vein glucose sensor, whose activation leads to enhanced glucose use in skeletal muscle, heart, and brown adipose tissue. The mechanism leading to this increase in whole body glucose clearance is not known, but previous data suggest that it is insulin independent. Here, we sought to further determine the portal sensor signaling pathway by selectively evaluating its dependence on muscle GLUT4, insulin receptor, and the evolutionarily conserved sensor of metabolic stress, AMP-activated protein kinase (AMPK). We demonstrate that the increase in muscle glucose use was suppressed in mice lacking the expression of GLUT4 in the organ muscle. In contrast, glucose use was stimulated normally in mice with muscle-specific inactivation of the insulin receptor gene, confirming independence from insulin-signaling pathways. Most importantly, the muscle glucose use in response to activation of the hepatoportal vein glucose sensor was completely dependent on the activity of AMPK, because enhanced hexose disposal was prevented by expression of a dominant negative AMPK in muscle. These data demonstrate that the portal sensor induces glucose use and development of hypoglycemia independently of insulin action, but by a mechanism that requires activation of the AMPK and the presence of GLUT4.

Authors

Rémy Burcelin, Valerie Crivelli, Christophe Perrin, Anabela Da Costa, James Mu, Barbara B. Kahn, Morris J. Birnbaum, C. Ronald Kahn, Peter Vollenweider, Bernard Thorens

×
  • ← Previous
  • 1
  • 2
  • …
  • 60
  • 61
  • 62
  • 63
  • 64
  • Next →
Using SORLA to sort out human obesity
Vanessa Schmidt and colleagues demonstrate that the intracellular sorting receptor SORLA is an important regulator of lipid metabolism…
Published June 20, 2016
Scientific Show StopperMetabolism

Intracellular calcium leak recasts β cell landscape
Gaetano Santulli and colleagues reveal that RyR2 calcium channels in pancreatic β cells mediate insulin release and glucose homeostasis…
Published April 6, 2015
Scientific Show StopperMetabolism
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts