Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Corrigendum Free access | 10.1172/JCI75669

Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis

Eric D. Berglund, Chen Liu, Jong-Woo Sohn, Tiemin Liu, Mi Hwa Kim, Charlotte E. Lee, Claudia R. Vianna, Kevin W. Williams, Yong Xu, and Joel K. Elmquist

Find articles by Berglund, E. in: PubMed | Google Scholar

Find articles by Liu, C. in: PubMed | Google Scholar

Find articles by Sohn, J. in: PubMed | Google Scholar

Find articles by Liu, T. in: PubMed | Google Scholar

Find articles by Kim, M. in: PubMed | Google Scholar

Find articles by Lee, C. in: PubMed | Google Scholar

Find articles by Vianna, C. in: PubMed | Google Scholar

Find articles by Williams, K. in: PubMed | Google Scholar

Find articles by Xu, Y. in: PubMed | Google Scholar

Find articles by Elmquist, J. in: PubMed | Google Scholar

Published April 1, 2014 - More info

Published in Volume 124, Issue 4 on April 1, 2014
J Clin Invest. 2014;124(4):1868–1868. https://doi.org/10.1172/JCI75669.
© 2014 The American Society for Clinical Investigation
Published April 1, 2014 - Version history
View PDF

Related article:

Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis
Eric D. Berglund, Chen Liu, Jong-Woo Sohn, Tiemin Liu, Mi Hwa Kim, Charlotte E. Lee, Claudia R. Vianna, Kevin W. Williams, Yong Xu, Joel K. Elmquist
Eric D. Berglund, Chen Liu, Jong-Woo Sohn, Tiemin Liu, Mi Hwa Kim, Charlotte E. Lee, Claudia R. Vianna, Kevin W. Williams, Yong Xu, Joel K. Elmquist
Research Article Metabolism

Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis

  • Text
  • PDF
Abstract

Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor–expressing neurons that mediate the effects of serotonin and serotonin 2C receptor agonists on energy and glucose homeostasis are unknown. Here, we show that mice lacking serotonin 2C receptors (Htr2c) specifically in pro-opiomelanocortin (POMC) neurons had normal body weight but developed glucoregulatory defects including hyperinsulinemia, hyperglucagonemia, hyperglycemia, and insulin resistance. Moreover, these mice did not show anorectic responses to serotonergic agents that suppress appetite and developed hyperphagia and obesity when they were fed a high-fat/high-sugar diet. A requirement of serotonin 2C receptors in POMC neurons for the maintenance of normal energy and glucose homeostasis was further demonstrated when Htr2c loss was induced in POMC neurons in adult mice using a tamoxifen-inducible POMC-cre system. These data demonstrate that serotonin 2C receptor–expressing POMC neurons are required to control energy and glucose homeostasis and implicate POMC neurons as the target for the effect of serotonin 2C receptor agonists on weight-loss induction and improved glycemic control.

Authors

Eric D. Berglund, Chen Liu, Jong-Woo Sohn, Tiemin Liu, Mi Hwa Kim, Charlotte E. Lee, Claudia R. Vianna, Kevin W. Williams, Yong Xu, Joel K. Elmquist

×

Original citation: J Clin Invest. 2013;123(12):5061–5070. doi:10.1172/JCI70338.

Citation for this corrigendum: J Clin Invest. 2014;124(4):1868. doi:10.1172/JCI75669.

Units for doses of tamoxifen were incorrect in the legends for Figure 6 and Figure 7 and in the Methods section. The correct units are mg/g body weight.

The authors regret the error.

Version history
  • Version 1 (April 1, 2014): No description
  • Version 2 (April 1, 2014): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts