Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Top
  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal
  • Top
  • Abstract
  • Version history
  • Article usage
  • Citations to this article

Advertisement

Research Article Free access | 10.1172/JCI105879

Effect of acute hypoxia and hypercapnic acidosis on the development of acetylstrophanthidin-induced arrhythmias

John F. Williams Jr., Daniel L. Boyd, and John F. Border

Cardiovascular Research Laboratory, Veterans Administration Hospital, and the Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202

Find articles by Williams, J. in: PubMed | Google Scholar

Cardiovascular Research Laboratory, Veterans Administration Hospital, and the Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202

Find articles by Boyd, D. in: PubMed | Google Scholar

Cardiovascular Research Laboratory, Veterans Administration Hospital, and the Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana 46202

Find articles by Border, J. in: PubMed | Google Scholar

Published August 1, 1968 - More info

Published in Volume 47, Issue 8 on August 1, 1968
J Clin Invest. 1968;47(8):1885–1894. https://doi.org/10.1172/JCI105879.
© 1968 The American Society for Clinical Investigation
Published August 1, 1968 - Version history
View PDF
Abstract

The effect of acutely induced hypoxia, hypercapnic acidosis, and the combination of the two on the amount of acetylstrophanthidin (AS) required to produce cardiac arrhythmias was determined in anesthetized dogs. Each animal was studied during ventilation with room air and again during ventilation with gas mixtures of appropriate concentrations; 24 hr separated the study periods. AS was infused intravenously at a rate of 5 μg/kg per min.

Significantly less AS was required to produce arrhythmias during hypoxia and hypercapnic acidosis together than during the period with normal arterial Po2, Pco2, and pH (10 animals). Included in this group were two animals which had undergone previous bilateral adrenalectomy and four animals in which heart rate was maintained at the same frequency during both study periods. A significant reduction in the toxic dose of AS also was demonstrated in eight animals, two with constant heart rate, during hypoxia with normal arterial Pco2 and pH. Hypercapnic acidosis alone (eight animals) did not significantly alter the toxic dose of AS. After the administration of propranolol (six animals) or hexamethionium (six animals), no significant difference was observed between the toxic dose of AS during hypoxia and that during ventilation with room air. Thus although hypoxia and hypercapnic acidosis together do reduce the amount of AS required to produce arrhythmias, it is the hypoxia which exerts the predominant effect on the development of this increased sensitivity to AS. Furthermore, this effect of hypoxia occurs primarily as a result of reflexly augmented sympathetic stimulation of the heart.

Browse pages

Click on an image below to see the page. View PDF of the complete article

icon of scanned page 1885
page 1885
icon of scanned page 1886
page 1886
icon of scanned page 1887
page 1887
icon of scanned page 1888
page 1888
icon of scanned page 1889
page 1889
icon of scanned page 1890
page 1890
icon of scanned page 1891
page 1891
icon of scanned page 1892
page 1892
icon of scanned page 1893
page 1893
icon of scanned page 1894
page 1894
Version history
  • Version 1 (August 1, 1968): No description

Article tools

  • View PDF
  • Download citation information
  • Send a comment
  • Terms of use
  • Standard abbreviations
  • Need help? Email the journal

Metrics

  • Article usage
  • Citations to this article

Go to

  • Top
  • Abstract
  • Version history
Advertisement
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts