Review

Abstract

There is increasing evidence that the immune response can be inhibited by several T cell subsets, including NK T cells, CD25+CD4+ T cells, and a subpopulation of CD8+ T cells. Animal model studies of multiple sclerosis have suggested an important role for suppressor CD8+ T cells in protection against disease recurrence and exacerbation. The molecular lynchpin of CD8+ suppressive activity is the murine MHC molecule Qa-1, termed HLA-E in humans. Here we summarize findings from work on Qa-1 that have begun to delineate suppressor CD8+ T cells and their mechanisms of action in the context of self tolerance and autoimmune disease.

Authors

Stefanie Sarantopoulos, Linrong Lu, Harvey Cantor

×

Abstract

Regulation of the immune response is a multifaceted process involving lymphocytes that function to maintain both self tolerance as well as homeostasis following productive immunity against microbes. There are 2 broad categories of Tregs that function in different immunological settings depending upon the context of antigen exposure and the nature of the inflammatory response. During massive inflammatory conditions such as microbial exposure in the gut or tissue transplantation, regulatory CD4+CD25+ Tregs broadly suppress priming and/or expansion of polyclonal autoreactive responses nonspecifically. In other immune settings where initially a limited repertoire of antigen-reactive T cells is activated and expanded, TCR-specific negative feedback mechanisms are able to achieve a fine homeostatic balance. Here I will describe experimental evidence for the existence of a Treg population specific for determinants that are derived from the TCR and are expressed by expanding myelin basic protein–reactive T cells mediating experimental autoimmune encephalomyelitis, an animal prototype for multiple sclerosis. These mechanisms ensure induction of effective but appropriately limited responses against foreign antigens while preventing autoreactivity from inflicting escalating damage. In contrast to CD25+ Tregs, which are most efficient at suppressing priming or activation, these specific Tregs are most efficient in controlling T cells following their activation.

Authors

Vipin Kumar

×

Abstract

T cell vaccination (TCV) activates Tregs of 2 kinds: anti-idiotypic (anti-id) and anti-ergotypic (anti-erg). These regulators furnish a useful view of the physiology of T cell regulation of the immune response. Anti-id Tregs recognize specific effector clones by their unique TCR CDR3 peptides; anti-id networks of CD4+ and CD8+ Tregs have been described in detail. Here we shall focus on anti-erg T regulators. Anti-erg T cells, unlike anti-id T cells, do not recognize the clonal identity of effector T cells; rather, anti-erg T cells recognize the state of activation of target effector T cells, irrespective of their TCR specificity. We consider several features of anti-erg T cells: their ontogeny, subset markers, and target ergotope molecules; mechanisms by which they regulate other T cells; mechanisms by which they get regulated; and therapeutic prospects for anti-erg upregulation and downregulation.

Authors

Irun R. Cohen, Francisco J. Quintana, Avishai Mimran

×

Abstract

The immune system evolved to protect organisms from a virtually infinite variety of disease-causing agents but to avoid harmful responses to self. Because immune protective mechanisms include the elaboration of potent inflammatory molecules, antibodies, and killer cell activation — which together can not only destroy invading microorganisms, pathogenic autoreactive cells, and tumors, but also mortally injure normal cells — the immune system is inherently a “double-edged sword” and must be tightly regulated. Immune response regulation includes homeostatic mechanisms intrinsic to the activation and differentiation of antigen-triggered immunocompetent cells and extrinsic mechanisms mediated by suppressor cells. This review series will focus on recent advances indicating that distinct subsets of regulatory CD4+ and CD8+ T cells as well as NK T cells control the outgrowth of potentially pathogenic antigen-reactive T cells and will highlight the evidence that these suppressor T cells may play potentially important clinical roles in preventing and treating immune-mediated disease. Here we provide a historical overview of suppressor cells and the experimental basis for the existence of functionally and phenotypically distinct suppressor subsets. Finally, we will speculate on how the distinct suppressor cell subsets may function in concert to regulate immune responses.

Authors

Hong Jiang, Leonard Chess

×

Abstract

Islet transplantation represents a most impressive recent advance in the search for a type 1 diabetes mellitus cure. While several hundred patients have achieved at least temporary insulin independence after receiving the islet “mini-organs” (containing insulin-producing β cells), very few patients remain insulin independent beyond 4 years after transplantation. In this review, we describe historic as well as technical details about the procedure and provide insight into clinical and basic research efforts to overcome existing hurdles for this promising therapy.

Authors

Kristina I. Rother, David M. Harlan

×

Abstract

Trophoblasts, the specialized cells of the placenta, play a major role in implantation and formation of the maternal-fetal interface. Through an unusual differentiation process examined in this review, these fetal cells acquire properties of leukocytes and endothelial cells that enable many of their specialized functions. In recent years a great deal has been learned about the regulatory mechanisms, from transcriptional networks to oxygen tension, which control trophoblast differentiation. The challenge is to turn this information into clinically useful tests for monitoring placental function and, hence, pregnancy outcome.

Authors

Kristy Red-Horse, Yan Zhou, Olga Genbacev, Akraporn Prakobphol, Russell Foulk, Michael McMaster, Susan J. Fisher

×

Abstract

Cell-to-cell viral transmission facilitates the propagation of HIV-1 and human T cell leukemia virus type 1. Mechanisms of cell-to-cell transmission by retroviruses were not well understood until the recent description of virological synapses (VSs). VSs function as specialized sites of immune cell-to-cell contact that direct virus infection. Deciphering the molecular mechanisms of VS formation provides a fascinating insight into how pathogens subvert immune cell communication programs and achieve viral spread.

Authors

Vincent Piguet, Quentin Sattentau

×

Abstract

Among the most cost-effective strategies for preventing viral infections, vaccines have proven effective primarily against viruses causing acute, self-limited infections. For these it has been sufficient for the vaccine to mimic the natural virus. However, viruses causing chronic infection do not elicit an immune response sufficient to clear the infection and, as a result, vaccines for these viruses must elicit more effective responses — quantitative and qualitative — than does the natural virus. Here we examine the immunologic and virologic basis for vaccines against three such viruses, HIV, hepatitis C virus, and human papillomavirus, and review progress in clinical trials to date. We also explore novel strategies for increasing the immunogenicity and efficacy of vaccines.

Authors

Jay A. Berzofsky, Jeffrey D. Ahlers, John Janik, John Morris, SangKon Oh, Masaki Terabe, Igor M. Belyakov

×

Abstract

Obesity and its associated comorbidities are among the most prevalent and challenging conditions confronting the medical profession in the 21st century. A major metabolic consequence of obesity is insulin resistance, which is strongly associated with the deposition of triglycerides in the liver. Hepatic steatosis can either be a benign, noninflammatory condition that appears to have no adverse sequelae or can be associated with steatohepatitis: a condition that can result in end-stage liver disease, accounting for up to 14% of liver transplants in the US. Here we highlight recent advances in our understanding of the molecular events contributing to hepatic steatosis and nonalcoholic steatohepatitis.

Authors

Jeffrey D. Browning, Jay D. Horton

×

Abstract

The term “prion” was introduced by Stanley Prusiner in 1982 to describe the atypical infectious agent that causes transmissible spongiform encephalopathies, a group of infectious neurodegenerative diseases that include scrapie in sheep, Creutzfeldt-Jakob disease in humans, chronic wasting disease in cervids, and bovine spongiform encephalopathy in cattle. Over the past twenty years, the word “prion” has been taken to signify various subtly different concepts. In this article, we refer to the prion as the transmissible principle underlying prion diseases, without necessarily implying any specific biochemical or structural identity. When Prusiner started his seminal work, the study of transmissible spongiform encephalopathies was undertaken by only a handful of scientists. Since that time, the “mad cow” crisis has put prion diseases on the agenda of both politicians and the media. Significant progress has been made in prion disease research, and many aspects of prion pathogenesis are now understood. And yet the diagnostic procedures available for prion diseases are not nearly as sensitive as they ought to be, and no therapeutic intervention has been shown to reliably affect the course of the diseases. This article reviews recent progress in the areas of pathogenesis of, diagnostics of, and therapy for prion diseases and highlights some conspicuous problems that remain to be addressed in each of these fields.

Authors

Adriano Aguzzi, Mathias Heikenwalder, Gino Miele

×

No posts were found with this tag.