Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
Telomeres and age-related disease: how telomere biology informs clinical paradigms
Mary Armanios
Mary Armanios
Published March 1, 2013
Citation Information: J Clin Invest. 2013;123(3):996-1002. https://doi.org/10.1172/JCI66370.
View: Text | PDF
Review Series

Telomeres and age-related disease: how telomere biology informs clinical paradigms

  • Text
  • PDF
Abstract

Telomere length shortens with age and predicts the onset of replicative senescence. Recently, short telomeres have been linked to the etiology of degenerative diseases such as idiopathic pulmonary fibrosis, bone marrow failure, and cryptogenic liver cirrhosis. These disorders have recognizable clinical manifestations, and the telomere defect explains their genetics and informs the approach to their treatment. Here, I review how telomere biology has become intimately connected to clinical paradigms both for understanding pathophysiology and for individualizing therapy decisions. I also critically examine nuances of interpreting telomere length measurement in clinical studies.

Authors

Mary Armanios

×

Figure 1

Clinical manifestations of telomere disorders and their onset relative to tissue turnover rate.

Options: View larger image (or click on image) Download as PowerPoint
Clinical manifestations of telomere disorders and their onset relative t...
Shown are representative images of diagnostic histopathology and radiographic studies in patients with telomere-mediated disease (A–D) and 5-ethynyl-2′-deoxyuridine (EdU) incorporation detected in corresponding mouse tissues (E–H). The estimated turnover rate of more than 90% of cells is indicated for each pair of images. (A) Photomicrograph of a bone marrow biopsy showing an acellular marrow replaced by adipose tissue with only remnants of hematopoiesis, taken from an individual with aplastic anemia. Image reproduced with permission from Annual Reviews of Genomics and Human Genetics (31). (B) Histopathology of a duodenal biopsy from a patient with telomere-mediated enteropathy shows profound villous atrophy. Image reproduced with permission from Aging Cell (53). (C) Abdominal CT scan image from a patient with liver cirrhosis, as evidenced by the nodular liver surface, the caudate lobe hypertrophy, and splenomegaly. (D) Lung windows of a chest CT scan from a carrier of the telomerase mutation show classic basilar honeycombing changes pathognomonic for IPF. (E) Flow cytometry plot of EdU incorporation in the bone marrow after a short (2-hour) pulse, showing that nearly one-third of the cells have undergone division. (F) Immunohistochemistry of intestinal section after a EdU pulse (5 days) shows that nearly all enteric epithelial cells are positively labeled (brown). (G) Brown staining shows EdU-labeled hepatocytes after EdU labeling (14 days). (H) Image of terminal bronchiole shows EdU-positive lung epithelial cells (red) identified by the Clara cell antigen (green) after 14 day label.

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts