Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Brief Report

  • 166 Articles
  • 0 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 13
  • 14
  • 15
  • 16
  • 17
  • Next →
Transmission of malaria to mosquitoes blocked by bumped kinase inhibitors
Kayode K. Ojo, … , Oliver Billker, Wesley C. Van Voorhis
Kayode K. Ojo, … , Oliver Billker, Wesley C. Van Voorhis
Published May 8, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI61822.
View: Text | PDF

Transmission of malaria to mosquitoes blocked by bumped kinase inhibitors

  • Text
  • PDF
Abstract

Effective control and eradication of malaria will require new tools to prevent transmission. Current antimalarial therapies targeting the asexual stage of Plasmodium do not prevent transmission of circulating gametocytes from infected humans to mosquitoes. Here, we describe a new class of transmission-blocking compounds, bumped kinase inhibitors (BKIs), which inhibit microgametocyte exflagellation. Oocyst formation and sporozoite production, necessary for transmission to mammals, were inhibited in mosquitoes fed on either BKI-1–treated human blood or mice treated with BKI-1. BKIs are hypothesized to act via inhibition of Plasmodium calcium-dependent protein kinase 4 and predicted to have little activity against mammalian kinases. Our data show that BKIs do not inhibit proliferation of mammalian cell lines and are well tolerated in mice. Used in combination with drugs active against asexual stages of Plasmodium, BKIs could prove an important tool for malaria control and eradication.

Authors

Kayode K. Ojo, Claudia Pfander, Natascha R. Mueller, Charlotte Burstroem, Eric T. Larson, Cassie M. Bryan, Anna M.W. Fox, Molly C. Reid, Steven M. Johnson, Ryan C. Murphy, Mark Kennedy, Henning Mann, David J. Leibly, Stephen N. Hewitt, Christophe L.M.J. Verlinde, Stefan Kappe, Ethan A. Merritt, Dustin J. Maly, Oliver Billker, Wesley C. Van Voorhis

×

Rorγt+ innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice
Stanislav Pantelyushin, … , Alexander A. Navarini, Burkhard Becher
Stanislav Pantelyushin, … , Alexander A. Navarini, Burkhard Becher
Published May 1, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI61862.
View: Text | PDF

Rorγt+ innate lymphocytes and γδ T cells initiate psoriasiform plaque formation in mice

  • Text
  • PDF
Abstract

Psoriasis is a common, relapsing inflammatory skin disease characterized by erythematous scaly plaques. Histological manifestations of psoriasis include keratinocyte dysregulation and hyperproliferation, elongated rete ridges, and inflammatory infiltrates consisting of T cells, macrophages, dendritic cells, and neutrophils. Despite the availability of new effective drugs to treat psoriasis, the underlying mechanisms of pathogenesis are still poorly understood. Recent studies have shown that Aldara cream, used to treat benign skin abnormalities, triggers psoriasis-like disease in humans and mice and have implicated Th17 cells in disease initiation. Using this as a model, we found a predominant role for the Th17 signature cytokines IL-17A, IL-17F, and IL-22 in psoriasiform plaque formation in mice. Using gene-targeted mice, we observed that loss of Il17a, Il17f, or Il22 strongly reduced disease the severity of psoriasis. However, we found that Th17 cells were not the primary source of these pathogenic cytokines. Rather, IL-17A, IL-17F, and IL-22 were produced by a skin-invading population of γδ T cells and RORγt+ innate lymphocytes. Furthermore, our findings establish that RORγt+ innate lymphocytes and γδ T cells are necessary and sufficient for psoriatic plaque formation in an experimental disease model that closely resembles human psoriatic plaque formation.

Authors

Stanislav Pantelyushin, Stefan Haak, Barbara Ingold, Paulina Kulig, Frank L. Heppner, Alexander A. Navarini, Burkhard Becher

×

PD-1 blockade during chronic SIV infection reduces hyperimmune activation and microbial translocation in rhesus macaques
Ravi Dyavar Shetty, … , Guido Silvestri, Rama Rao Amara
Ravi Dyavar Shetty, … , Guido Silvestri, Rama Rao Amara
Published April 23, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI60612.
View: Text | PDF

PD-1 blockade during chronic SIV infection reduces hyperimmune activation and microbial translocation in rhesus macaques

  • Text
  • PDF
Abstract

Hyperimmune activation is a strong predictor of disease progression during pathogenic immunodeficiency virus infections and is mediated in part by sustained type I IFN signaling in response to adventitious microbial infection. The immune inhibitory receptor programmed death–1 (PD-1) regulates functional exhaustion of virus-specific CD8+ T cells during chronic infections, and in vivo PD-1 blockade has been shown to improve viral control of SIV. Here, we show that PD-1 blockade during chronic SIV infection markedly reduced the expression of transcripts associated with type I IFN signaling in the blood and colorectal tissue of rhesus macaques (RMs). The effect of PD-1 blockade on type I IFN signaling was durable and persisted even under conditions of high viremia. Reduced type I IFN signaling was associated with enhanced expression of some of the junction-associated genes in colorectal tissue and with a profound decrease in plasma LPS levels, suggesting a possible repair of gut-associated junctions and decreased microbial translocation into the blood. PD-1 blockade enhanced immunity to gut-resident pathogenic bacteria, control of gut-associated opportunistic infections, and survival of SIV-infected RMs. Our results suggest PD-1 blockade as a potential novel therapeutic approach to enhance combination antiretroviral therapy by suppressing hyperimmune activation in HIV-infected individuals.

Authors

Ravi Dyavar Shetty, Vijayakumar Velu, Kehmia Titanji, Steven E. Bosinger, Gordon J. Freeman, Guido Silvestri, Rama Rao Amara

×

Revertant mosaicism in a human skin fragility disorder results from slipped mispairing and mitotic recombination
Dimitra Kiritsi, … , Leena Bruckner-Tuderman, Cristina Has
Dimitra Kiritsi, … , Leena Bruckner-Tuderman, Cristina Has
Published April 2, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI61976.
View: Text | PDF

Revertant mosaicism in a human skin fragility disorder results from slipped mispairing and mitotic recombination

  • Text
  • PDF
Abstract

Spontaneous gene repair, also called revertant mosaicism, has been documented in several genetic disorders involving organs that undergo self-regeneration, including the skin. Genetic reversion may occur through different mechanisms, and in a single individual, the mutation can be repaired in various ways. Here we describe a disseminated pattern of revertant mosaicism observed in 6 patients with Kindler syndrome (KS), a genodermatosis caused by loss of kindlin-1 (encoded by FERMT1) and clinically characterized by patchy skin pigmentation and atrophy. All patients presented duplication mutations (c.456dupA and c.676dupC) in FERMT1, and slipped mispairing in direct nucleotide repeats was identified as the reversion mechanism in all investigated revertant skin spots. The sequence around the mutations demonstrated high propensity to mutations, favoring both microinsertions and microdeletions. Additionally, in some revertant patches, mitotic recombination generated areas with homozygous normal keratinocytes. Restoration of kindlin-1 expression led to clinically and structurally normal skin. Since loss of kindlin-1 severely impairs keratinocyte proliferation, we predict that revertant cells have a selective advantage that allows their clonal expansion and, consequently, the improvement of the skin condition.

Authors

Dimitra Kiritsi, Yinghong He, Anna M.G. Pasmooij, Meltem Onder, Rudolf Happle, Marcel Jonkman, Leena Bruckner-Tuderman, Cristina Has

×

Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice
Jimmy Rotolo, … , Wadih Arap, Richard Kolesnick
Jimmy Rotolo, … , Wadih Arap, Richard Kolesnick
Published April 2, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI59920.
View: Text | PDF

Anti-ceramide antibody prevents the radiation gastrointestinal syndrome in mice

  • Text
  • PDF
Abstract

Radiation gastrointestinal (GI) syndrome is a major lethal toxicity that may occur after a radiation/nuclear incident. Currently, there are no prophylactic countermeasures against radiation GI syndrome lethality for first responders, military personnel, or remediation workers entering a contaminated area. The pathophysiology of this syndrome requires depletion of stem cell clonogens (SCCs) within the crypts of Lieberkühn, which are a subset of cells necessary for postinjury regeneration of gut epithelium. Recent evidence indicates that SCC depletion is not exclusively a result of DNA damage but is critically coupled to ceramide-induced endothelial cell apoptosis within the mucosal microvascular network. Here we show that ceramide generated on the surface of endothelium coalesces to form ceramide-rich platforms that transmit an apoptotic signal. Moreover, we report the generation of 2A2, an anti-ceramide monoclonal antibody that binds to ceramide to prevent platform formation on the surface of irradiated endothelial cells of the murine GI tract. Consequently, we found that 2A2 protected against endothelial apoptosis in the small intestinal lamina propria and facilitated recovery of crypt SCCs, preventing the death of mice from radiation GI syndrome after high radiation doses. As such, we suggest that 2A2 represents a prototype of a new class of anti-ceramide therapeutics and an effective countermeasure against radiation GI syndrome mortality.

Authors

Jimmy Rotolo, Branka Stancevic, Jianjun Zhang, Guoqiang Hua, John Fuller, Xianglei Yin, Adriana Haimovitz-Friedman, Kisu Kim, Ming Qian, Marina Cardó-Vila, Zvi Fuks, Renata Pasqualini, Wadih Arap, Richard Kolesnick

×

Hepatocyte-specific mutation of both NF-κB RelA and STAT3 abrogates the acute phase response in mice
Lee J. Quinton, … , Avrum Spira, Joseph P. Mizgerd
Lee J. Quinton, … , Avrum Spira, Joseph P. Mizgerd
Published April 2, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI59408.
View: Text | PDF

Hepatocyte-specific mutation of both NF-κB RelA and STAT3 abrogates the acute phase response in mice

  • Text
  • PDF
Abstract

The acute phase response is an evolutionarily conserved reaction in which physiological stress triggers the liver to remodel the blood proteome. Although thought to be involved in immune defense, the net biological effect of the acute phase response remains unknown. As the acute phase response is stimulated by diverse cytokines that activate either NF-κB or STAT3, we hypothesized that it could be eliminated by hepatocyte-specific interruption of both transcription factors. Here, we report that the elimination in mice of both NF-κB p65 (RelA) and STAT3, but neither alone, abrogated all acute phase responses measured. The failure to respond was consistent across multiple different infectious, inflammatory, and noxious stimuli, including pneumococcal pneumonia. When the effects of infection were analyzed in detail, pneumococcal pneumonia was found to alter the expression of over a thousand transcripts in the liver. This outcome was inhibited by the combined loss of RelA and STAT3. Moreover, this interruption of the acute phase response increased mortality and exacerbated bacterial dissemination during pneumonia, possibly as a result of acute humoral enhancement of macrophage opsonophagocytosis, which was impaired in the mutant mice. Thus, we conclude that RelA and STAT3 are essential for stress-induced transcriptional remodeling in the liver and the subsequent activation of the acute phase response, whose functional role includes compartmentalization of local infection.

Authors

Lee J. Quinton, Matthew T. Blahna, Matthew R. Jones, Eri Allen, Joseph D. Ferrari, Kristie L. Hilliard, Xiaoling Zhang, Vishakha Sabharwal, Hana Algül, Shizuo Akira, Roland M. Schmid, Stephen I. Pelton, Avrum Spira, Joseph P. Mizgerd

×

Direct and efficient cellular transformation of primary rat mesenchymal precursor cells by KSHV
Tiffany Jones, … , Mazen Arar, Shou-Jiang Gao
Tiffany Jones, … , Mazen Arar, Shou-Jiang Gao
Published February 1, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI58530.
View: Text | PDF

Direct and efficient cellular transformation of primary rat mesenchymal precursor cells by KSHV

  • Text
  • PDF
Abstract

Infections by viruses are associated with approximately 12% of human cancer. Kaposi’s sarcoma-associated herpesvirus (KSHV) is causally linked to several malignancies commonly found in AIDS patients. The mechanism of KSHV-induced oncogenesis remains elusive, due in part to the lack of an adequate experimental system for cellular transformation of primary cells. Here, we report efficient infection and cellular transformation of primary rat embryonic metanephric mesenchymal precursor cells (MM cells) by KSHV. Cellular transformation occurred at as early as day 4 after infection and in nearly all infected cells. Transformed cells expressed hallmark vascular endothelial, lymphatic endothelial, and mesenchymal markers and efficiently induced tumors in nude mice. KSHV established latent infection in MM cells, and lytic induction resulted in low levels of detectable infectious virions despite robust expression of lytic genes. Most KSHV-induced tumor cells were in a latent state, although a few showed heterogeneous expression of lytic genes. This efficient system for KSHV cellular transformation of primary cells might facilitate the study of growth deregulation mechanisms resulting from KSHV infections.

Authors

Tiffany Jones, Fengchun Ye, Roble Bedolla, Yufei Huang, Jia Meng, Liwu Qian, Hongyi Pan, Fuchun Zhou, Rosalie Moody, Brent Wagner, Mazen Arar, Shou-Jiang Gao

×

An activating Pik3ca mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice
Kathryn M. Kinross, … , Grant A. McArthur, Wayne A. Phillips
Kathryn M. Kinross, … , Grant A. McArthur, Wayne A. Phillips
Published January 3, 2012
Citation Information: J Clin Invest. 2012. https://doi.org/10.1172/JCI59309.
View: Text | PDF

An activating Pik3ca mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice

  • Text
  • PDF
Abstract

Mutations in the gene encoding the p110α subunit of PI3K (PIK3CA) that result in enhanced PI3K activity are frequently observed in human cancers. To better understand the role of mutant PIK3CA in the initiation or progression of tumorigenesis, we generated mice in which a PIK3CA mutation commonly detected in human cancers (the H1047R mutation) could be conditionally knocked into the endogenous Pik3ca locus. Activation of this mutation in the mouse ovary revealed that alone, Pik3caH1047R induced premalignant hyperplasia of the ovarian surface epithelium but no tumors. Concomitantly, we analyzed several human ovarian cancers and found PIK3CA mutations coexistent with KRAS and/or PTEN mutations, raising the possibility that a secondary defect in a co-regulator of PI3K activity may be required for mutant PIK3CA to promote transformation. Consistent with this notion, we found that Pik3caH1047R mutation plus Pten deletion in the mouse ovary led to the development of ovarian serous adenocarcinomas and granulosa cell tumors. Both mutational events were required for early, robust Akt activation. Pharmacological inhibition of PI3K/mTOR in these mice delayed tumor growth and prolonged survival. These results demonstrate that the Pik3caH1047R mutation with loss of Pten is enough to promote ovarian cell transformation and that we have developed a model system for studying possible therapies.

Authors

Kathryn M. Kinross, Karen G. Montgomery, Margarete Kleinschmidt, Paul Waring, Ivan Ivetac, Anjali Tikoo, Mirette Saad, Lauren Hare, Vincent Roh, Theo Mantamadiotis, Karen E. Sheppard, Georgina L. Ryland, Ian G. Campbell, Kylie L. Gorringe, James G. Christensen, Carleen Cullinane, Rodney J. Hicks, Richard B. Pearson, Ricky W. Johnstone, Grant A. McArthur, Wayne A. Phillips

×

Drosophila and mammalian models uncover a role for the myoblast fusion gene TANC1 in rhabdomyosarcoma
Usha Avirneni-Vadlamudi, … , Scott Cameron, Rene L. Galindo
Usha Avirneni-Vadlamudi, … , Scott Cameron, Rene L. Galindo
Published December 19, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI59877.
View: Text | PDF

Drosophila and mammalian models uncover a role for the myoblast fusion gene TANC1 in rhabdomyosarcoma

  • Text
  • PDF
Abstract

Rhabdomyosarcoma (RMS) is a malignancy of muscle myoblasts, which fail to exit the cell cycle, resist terminal differentiation, and are blocked from fusing into syncytial skeletal muscle. In some patients, RMS is caused by a translocation that generates the fusion oncoprotein PAX-FOXO1, but the underlying RMS pathogenetic mechanisms that impede differentiation and promote neoplastic transformation remain unclear. Using a Drosophila model of PAX-FOXO1–mediated transformation, we show here that mutation in the myoblast fusion gene rolling pebbles (rols) dominantly suppresses PAX-FOXO1 lethality. Further analysis indicated that PAX-FOXO1 expression caused upregulation of rols, which suggests that Rols acts downstream of PAX-FOXO1. In mammalian myoblasts, gene silencing of Tanc1, an ortholog of rols, revealed that it is essential for myoblast fusion, but is dispensable for terminal differentiation. Misexpression of PAX-FOXO1 in myoblasts upregulated Tanc1 and blocked differentiation, whereas subsequent reduction of Tanc1 expression to native levels by RNAi restored both fusion and differentiation. Furthermore, decreasing human TANC1 gene expression caused RMS cancer cells to lose their neoplastic state, undergo fusion, and form differentiated syncytial muscle. Taken together, these findings identify misregulated myoblast fusion caused by ectopic TANC1 expression as a RMS neoplasia mechanism and suggest fusion molecules as candidates for targeted RMS therapy.

Authors

Usha Avirneni-Vadlamudi, Kathleen A. Galindo, Tiana R. Endicott, Vera Paulson, Scott Cameron, Rene L. Galindo

×

Haptoglobin activates innate immunity to enhance acute transplant rejection in mice
Hua Shen, … , Margherita Maffei, Daniel R. Goldstein
Hua Shen, … , Margherita Maffei, Daniel R. Goldstein
Published December 12, 2011
Citation Information: J Clin Invest. 2011. https://doi.org/10.1172/JCI58344.
View: Text | PDF

Haptoglobin activates innate immunity to enhance acute transplant rejection in mice

  • Text
  • PDF
Abstract

Immune tolerance to transplanted organs is impaired when the innate immune system is activated in response to the tissue necrosis that occurs during harvesting and implantation procedures. A key molecule in this immune pathway is the intracellular TLR signal adaptor known as myeloid differentiation primary response gene 88 (MyD88). After transplantation, MyD88 induces DC maturation as well as the production of inflammatory mediators, such as IL-6 and TNF-α. However, upstream activators of MyD88 function in response to transplantation have not been identified. Here, we show that haptoglobin, an acute phase protein, is an initiator of this MyD88-dependent inflammatory process in a mouse model of skin transplantation. Necrotic lysates from transplanted skin elicited higher inflammatory responses in DCs than did nontransplanted lysates, suggesting DC-mediated responses are triggered by factors released during transplantation. Analysis of transplanted lysates identified haptoglobin as one of the proteins upregulated during transplantation. Expression of donor haptoglobin enhanced the onset of acute skin transplant rejection, whereas haptoglobin-deficient skin grafts showed delayed acute rejection and antidonor T cell priming in a MyD88-dependent graft rejection model. Thus, our results show that haptoglobin release following skin necrosis contributes to accelerated transplant rejection, with potential implications for the development of localized immunosuppressive therapies.

Authors

Hua Shen, Yang Song, Christopher M. Colangelo, Terence Wu, Can Bruce, Gaia Scabia, Anjela Galan, Margherita Maffei, Daniel R. Goldstein

×
  • ← Previous
  • 1
  • 2
  • …
  • 13
  • 14
  • 15
  • 16
  • 17
  • Next →

No posts were found with this tag.

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts