Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • ASCI Milestone Awards
    • Video Abstracts
    • Conversations with Giants in Medicine
  • Reviews
    • View all reviews ...
    • Clinical innovation and scientific progress in GLP-1 medicine (Nov 2025)
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • ASCI Milestone Awards
  • Video Abstracts
  • Conversations with Giants in Medicine
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Drosophila and mammalian models uncover a role for the myoblast fusion gene TANC1 in rhabdomyosarcoma
Usha Avirneni-Vadlamudi, Kathleen A. Galindo, Tiana R. Endicott, Vera Paulson, Scott Cameron, Rene L. Galindo
Usha Avirneni-Vadlamudi, Kathleen A. Galindo, Tiana R. Endicott, Vera Paulson, Scott Cameron, Rene L. Galindo
View: Text | PDF
Brief Report Oncology

Drosophila and mammalian models uncover a role for the myoblast fusion gene TANC1 in rhabdomyosarcoma

  • Text
  • PDF
Abstract

Rhabdomyosarcoma (RMS) is a malignancy of muscle myoblasts, which fail to exit the cell cycle, resist terminal differentiation, and are blocked from fusing into syncytial skeletal muscle. In some patients, RMS is caused by a translocation that generates the fusion oncoprotein PAX-FOXO1, but the underlying RMS pathogenetic mechanisms that impede differentiation and promote neoplastic transformation remain unclear. Using a Drosophila model of PAX-FOXO1–mediated transformation, we show here that mutation in the myoblast fusion gene rolling pebbles (rols) dominantly suppresses PAX-FOXO1 lethality. Further analysis indicated that PAX-FOXO1 expression caused upregulation of rols, which suggests that Rols acts downstream of PAX-FOXO1. In mammalian myoblasts, gene silencing of Tanc1, an ortholog of rols, revealed that it is essential for myoblast fusion, but is dispensable for terminal differentiation. Misexpression of PAX-FOXO1 in myoblasts upregulated Tanc1 and blocked differentiation, whereas subsequent reduction of Tanc1 expression to native levels by RNAi restored both fusion and differentiation. Furthermore, decreasing human TANC1 gene expression caused RMS cancer cells to lose their neoplastic state, undergo fusion, and form differentiated syncytial muscle. Taken together, these findings identify misregulated myoblast fusion caused by ectopic TANC1 expression as a RMS neoplasia mechanism and suggest fusion molecules as candidates for targeted RMS therapy.

Authors

Usha Avirneni-Vadlamudi, Kathleen A. Galindo, Tiana R. Endicott, Vera Paulson, Scott Cameron, Rene L. Galindo

×

Figure 1

PAX7-FOXO1 induces Rols misexpression in Drosophila.

Options: View larger image (or click on image) Download as PowerPoint
PAX7-FOXO1 induces Rols misexpression in Drosophila.
   
Whole-mount wil...
Whole-mount wild-type and daughterless-Gal, UAS-PAX7-FOXO1 (da>>PAX7-FOXO1) blastoderm embryos (anterior pole) were stained with anti–PAX7-FOXO1 and anti-Rols (red), and nuclei were stained with DAPI (blue). Wild-type embryos displayed no PAX7-FOXO1 or Rols protein expression; daughterless-Gal, UAS-PAX7-FOXO1 embryos showed diffuse PAX7-FOXO1 (transcription factor) and Rols (cytoplasmic adaptor molecule) expression: whereas the latter was excluded from the nucleus, the former was found within both cytoplasm and nuclei. Original magnification, ×800.

Copyright © 2026 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts