Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
An activating Pik3ca mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice
Kathryn M. Kinross, … , Grant A. McArthur, Wayne A. Phillips
Kathryn M. Kinross, … , Grant A. McArthur, Wayne A. Phillips
Published January 3, 2012
Citation Information: J Clin Invest. 2012;122(2):553-557. https://doi.org/10.1172/JCI59309.
View: Text | PDF
Brief Report Oncology

An activating Pik3ca mutation coupled with Pten loss is sufficient to initiate ovarian tumorigenesis in mice

  • Text
  • PDF
Abstract

Mutations in the gene encoding the p110α subunit of PI3K (PIK3CA) that result in enhanced PI3K activity are frequently observed in human cancers. To better understand the role of mutant PIK3CA in the initiation or progression of tumorigenesis, we generated mice in which a PIK3CA mutation commonly detected in human cancers (the H1047R mutation) could be conditionally knocked into the endogenous Pik3ca locus. Activation of this mutation in the mouse ovary revealed that alone, Pik3caH1047R induced premalignant hyperplasia of the ovarian surface epithelium but no tumors. Concomitantly, we analyzed several human ovarian cancers and found PIK3CA mutations coexistent with KRAS and/or PTEN mutations, raising the possibility that a secondary defect in a co-regulator of PI3K activity may be required for mutant PIK3CA to promote transformation. Consistent with this notion, we found that Pik3caH1047R mutation plus Pten deletion in the mouse ovary led to the development of ovarian serous adenocarcinomas and granulosa cell tumors. Both mutational events were required for early, robust Akt activation. Pharmacological inhibition of PI3K/mTOR in these mice delayed tumor growth and prolonged survival. These results demonstrate that the Pik3caH1047R mutation with loss of Pten is enough to promote ovarian cell transformation and that we have developed a model system for studying possible therapies.

Authors

Kathryn M. Kinross, Karen G. Montgomery, Margarete Kleinschmidt, Paul Waring, Ivan Ivetac, Anjali Tikoo, Mirette Saad, Lauren Hare, Vincent Roh, Theo Mantamadiotis, Karen E. Sheppard, Georgina L. Ryland, Ian G. Campbell, Kylie L. Gorringe, James G. Christensen, Carleen Cullinane, Rodney J. Hicks, Richard B. Pearson, Ricky W. Johnstone, Grant A. McArthur, Wayne A. Phillips

×

Full Text PDF | Download (3.33 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts