Based on extensive preclinical data, glycogen synthase kinase–3 (GSK-3) has been proposed to be a viable drug target for a wide variety of disease states, ranging from diabetes to bipolar disorder. Since these new drugs, which will be more powerful GSK-3 inhibitors than lithium, may potentially be given to women of childbearing potential, and since it has controversially been suggested that lithium therapy might be linked to congenital cardiac defects, we asked whether GSK-3 family members are required for normal heart development in mice. We report that terminal cardiomyocyte differentiation was substantially blunted in Gsk3b–/– embryoid bodies. While GSK-3α–deficient mice were born without a cardiac phenotype, no live-born Gsk3b–/– pups were recovered. The Gsk3b–/– embryos had a double outlet RV, ventricular septal defects, and hypertrophic myopathy, with near obliteration of the ventricular cavities. The hypertrophic myopathy was caused by cardiomyocyte hyperproliferation without hypertrophy and was associated with increased expression and nuclear localization of three regulators of proliferation — GATA4, cyclin D1, and c-Myc. These studies, which we believe are the first in mammals to examine the role of GSK-3α and GSK-3β in the heart using loss-of-function approaches, implicate GSK-3β as a central regulator of embryonic cardiomyocyte proliferation and differentiation, as well as of outflow tract development. Although controversy over the teratogenic effects of lithium remains, our studies suggest that caution should be exercised in the use of newer, more potent drugs targeting GSK-3 in women of childbearing age.
Risto Kerkela, Lisa Kockeritz, Katrina MacAulay, Jibin Zhou, Bradley W. Doble, Cara Beahm, Sarah Greytak, Kathleen Woulfe, Chinmay M. Trivedi, James R. Woodgett, Jonathan A. Epstein, Thomas Force, Gordon S. Huggins
Naturally occurring CD4+CD25hiFoxp3+ Tregs (nTregs) are highly proliferative in blood. However, the kinetics of their accumulation and proliferation during a localized antigen-specific T cell response is currently unknown. To explore this, we used a human experimental system whereby tuberculin purified protein derivative (PPD) was injected into the skin and the local T cell response analyzed over time. The numbers of both CD4+Foxp3– (memory) and CD4+Foxp3+ (putative nTreg) T cells increased in parallel, with the 2 populations proliferating at the same relative rate. In contrast to CD4+Foxp3– T cell populations, skin CD4+Foxp3+ T cells expressed typical Treg markers (i.e., they were CD25hi, CD127lo, CD27+, and CD39+) and did not synthesize IL-2 or IFN-γ after restimulation in vitro, indicating that they were not recently activated effector cells. To determine whether CD4+Foxp3+ T cells in skin could be induced from memory CD4+ T cells, we expanded skin-derived memory CD4+ T cells in vitro and anergized them. These cells expressed high levels of CD25 and Foxp3 and suppressed the proliferation of skin-derived responder T cells to PPD challenge. Our data therefore demonstrate that memory and CD4+ Treg populations are regulated in tandem during a secondary antigenic response. Furthermore, it is possible to isolate effector CD4+ T cell populations from inflamed tissues and manipulate them to generate Tregs with the potential to suppress inflammatory responses.
Milica Vukmanovic-Stejic, Elaine Agius, Nicola Booth, Padraic J. Dunne, Katie E. Lacy, John R. Reed, Toni O. Sobande, Steven Kissane, Mike Salmon, Malcolm H. Rustin, Arne N. Akbar
Epithelial-mesenchymal transitions (EMTs) play an important role in tissue construction during embryogenesis, and evidence suggests that this process may also help to remodel some adult tissues after injury. Activation of the hedgehog (Hh) signaling pathway regulates EMT during development. This pathway is also induced by chronic biliary injury, a condition in which EMT has been suggested to have a role. We evaluated the hypothesis that Hh signaling promotes EMT in adult bile ductular cells (cholangiocytes). In liver sections from patients with chronic biliary injury and in primary cholangiocytes isolated from rats that had undergone bile duct ligation (BDL), an experimental model of biliary fibrosis, EMT was localized to cholangiocytes with Hh pathway activity. Relief of ductal obstruction in BDL rats reduced Hh pathway activity, EMT, and biliary fibrosis. In mouse cholangiocytes, coculture with myofibroblastic hepatic stellate cells, a source of soluble Hh ligands, promoted EMT and cell migration. Addition of Hh-neutralizing antibodies to cocultures blocked these effects. Finally, we found that EMT responses to BDL were enhanced in patched-deficient mice, which display excessive activation of the Hh pathway. Together, these data suggest that activation of Hh signaling promotes EMT and contributes to the evolution of biliary fibrosis during chronic cholestasis.
Alessia Omenetti, Alessandro Porrello, Youngmi Jung, Liu Yang, Yury Popov, Steve S. Choi, Rafal P. Witek, Gianfranco Alpini, Juliet Venter, Hendrika M. Vandongen, Wing-Kin Syn, Gianluca Svegliati Baroni, Antonio Benedetti, Detlef Schuppan, Anna Mae Diehl
The final pathway of β cell destruction leading to insulin deficiency, hyperglycemia, and clinical type 1 diabetes is unknown. Here we show that circulating CTLs can kill β cells via recognition of a glucose-regulated epitope. First, we identified 2 naturally processed epitopes from the human preproinsulin signal peptide by elution from HLA-A2 (specifically, the protein encoded by the A*0201 allele) molecules. Processing of these was unconventional, requiring neither the proteasome nor transporter associated with processing (TAP). However, both epitopes were major targets for circulating effector CD8+ T cells from HLA-A2+ patients with type 1 diabetes. Moreover, cloned preproinsulin signal peptide–specific CD8+ T cells killed human β cells in vitro. Critically, at high glucose concentration, β cell presentation of preproinsulin signal epitope increased, as did CTL killing. This study provides direct evidence that autoreactive CTLs are present in the circulation of patients with type 1 diabetes and that they can kill human β cells. These results also identify a mechanism of self-antigen presentation that is under pathophysiological regulation and could expose insulin-producing β cells to increasing cytotoxicity at the later stages of the development of clinical diabetes. Our findings suggest that autoreactive CTLs are important targets for immune-based interventions in type 1 diabetes and argue for early, aggressive insulin therapy to preserve remaining β cells.
Ania Skowera, Richard J. Ellis, Ruben Varela-Calviño, Sefina Arif, Guo Cai Huang, Cassie Van-Krinks, Anna Zaremba, Chloe Rackham, Jennifer S. Allen, Timothy I.M. Tree, Min Zhao, Colin M. Dayan, Andrew K. Sewell, Wendy Unger, Jan W. Drijfhout, Ferry Ossendorp, Bart O. Roep, Mark Peakman
Tregs are important mediators of immune tolerance to self antigens, and it has been suggested that Treg inactivation may cause autoimmune disease. Therefore, immunotherapy approaches that aim to restore or expand autoantigen-specific Treg activity might be beneficial for the treatment of autoimmune disease. Here we report that Treg-mediated suppression of autoimmune disease can be achieved in vivo by taking advantage of the ability of the liver to promote immune tolerance. Expression of the neural autoantigen myelin basic protein (MBP) in the liver was accomplished stably in liver-specific MBP transgenic mice and transiently using gene transfer to liver cells in vivo. Such ectopic MBP expression induced protection from autoimmune neuroinflammation in a mouse model of multiple sclerosis. Protection from autoimmunity was mediated by MBP-specific CD4+CD25+Foxp3+ Tregs, as demonstrated by the ability of these cells to prevent disease when adoptively transferred into nontransgenic mice and to suppress conventional CD4+CD25– T cell proliferation after antigen-specific stimulation with MBP in vitro. The generation of MBP-specific CD4+CD25+Foxp3+ Tregs in vivo depended on expression of MBP in the liver, but not in skin, and occurred by TGF-β–dependent peripheral conversion from conventional non-Tregs. Our findings indicate that autoantigen expression in the liver may generate autoantigen-specific Tregs. Thus, targeting of autoantigens to hepatocytes may be a novel approach to prevention or treatment of autoimmune diseases.
Stefan Lüth, Samuel Huber, Christoph Schramm, Thorsten Buch, Stefan Zander, Christine Stadelmann, Wolfgang Brück, David C. Wraith, Johannes Herkel, Ansgar W. Lohse
Women with antiphospholipid syndrome (APS), a condition characterized by the presence of antiphospholipid antibodies (aPL), often suffer pregnancy-related complications, including miscarriage. We have previously shown that C5a induction of tissue factor (TF) expression in neutrophils contributes to respiratory burst, trophoblast injury, and pregnancy loss in mice treated with aPL. Here we analyzed how TF contributes to neutrophil activation and trophoblast injury in this model. Neutrophils from aPL-treated mice expressed protease-activated receptor 2 (PAR2), and stimulation of this receptor led to neutrophil activation, trophoblast injury, and fetal death. An antibody specific for human TF that has little impact on coagulation, but potently inhibits TF/Factor VIIa (FVIIa) signaling through PAR2, inhibited aPL-induced neutrophil activation in mice that expressed human TF. Genetic deletion of the TF cytoplasmic domain, which allows interaction between TF and PAR2, reduced aPL-induced neutrophil activation in aPL-treated mice. Par2–/– mice treated with aPL exhibited reduced neutrophil activation and normal pregnancies, which indicates that PAR2 plays an important role in the pathogenesis of aPL-induced fetal injury. We also demonstrated that simvastatin and pravastatin decreased TF and PAR2 expression on neutrophils and prevented pregnancy loss. Our results suggest that TF/FVIIa/PAR2 signaling mediates neutrophil activation and fetal death in APS and that statins may be a good treatment for women with aPL-induced pregnancy complications.
Patricia Redecha, Claus-Werner Franzke, Wolfram Ruf, Nigel Mackman, Guillermina Girardi
EAE is a mouse T cell–mediated autoimmune disease of the CNS used to model the human condition MS. The contributions of B cells to EAE initiation and progression are unclear. In this study, we have shown that EAE disease initiation and progression are differentially influenced by the depletion of B cells from mice with otherwise intact immune systems. CD20 antibody–mediated B cell depletion before EAE induction substantially exacerbated disease symptoms and increased encephalitogenic T cell influx into the CNS. Increased symptom severity resulted from the depletion of a rare IL-10–producing CD1dhiCD5+ regulatory B cell subset (B10 cells), since the adoptive transfer of splenic B10 cells before EAE induction normalized EAE in B cell–depleted mice. While transfer of regulatory B10 cells was maximally effective during early EAE initiation, they had no obvious role during disease progression. Rather, B cell depletion during EAE disease progression dramatically suppressed symptoms. Specifically, B cells were required for the generation of CD4+ T cells specific for CNS autoantigen and the entry of encephalitogenic T cells into the CNS during disease progression. These results demonstrate reciprocal regulatory roles for B cells during EAE immunopathogenesis. The therapeutic effect of B cell depletion for the treatment of autoimmunity may therefore depend on the relative contributions and the timing of these opposing B cell activities during the course of disease initiation and pathogenesis.
Takashi Matsushita, Koichi Yanaba, Jean-David Bouaziz, Manabu Fujimoto, Thomas F. Tedder
Glycogen synthase kinase–3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded by 2 genes, GSK3A and GSK3B. GSK-3 is thought to be involved in tissue repair and fibrogenesis, but its role in these processes is currently unknown. To investigate the function of GSK-3β in fibroblasts, we generated mice harboring a fibroblast-specific deletion of Gsk3b and evaluated their wound-healing and fibrogenic responses. We have shown that Gsk3b-conditional-KO mice (Gsk3b-CKO mice) exhibited accelerated wound closure, increased fibrogenesis, and excessive scarring compared with control mice. In addition, Gsk3b-CKO mice showed elevated collagen production, decreased cell apoptosis, elevated levels of profibrotic α-SMA, and increased myofibroblast formation during wound healing. In cultured Gsk3b-CKO fibroblasts, adhesion, spreading, migration, and contraction were enhanced. Both Gsk3b-CKO mice and fibroblasts showed elevated expression and production of endothelin-1 (ET-1) compared with control mice and cells. Antagonizing ET-1 reversed the phenotype of Gsk3b-CKO fibroblasts and mice. Thus, GSK-3β appears to control the progression of wound healing and fibrosis by modulating ET-1 levels. These results suggest that targeting the GSK-3β pathway or ET-1 may be of benefit in controlling tissue repair and fibrogenic responses in vivo.
Mohit Kapoor, Shangxi Liu, Xu Shi-wen, Kun Huh, Matthew McCann, Christopher P. Denton, James R. Woodgett, David J. Abraham, Andrew Leask
Asthma is a complex heritable disease that is increasing in prevalence and severity, particularly in developed countries such as the United States, where 11% of the population is affected. The contribution of environmental and genetic factors to this growing epidemic is currently not well understood. We developed the hypothesis, based on previous literature, that changes in DNA methylation resulting in aberrant gene transcription may enhance the risk of developing allergic airway disease. Our findings indicate that in mice, a maternal diet supplemented with methyl donors enhanced the severity of allergic airway disease that was inherited transgenerationally. Using a genomic approach, we discovered 82 gene-associated loci that were differentially methylated after in utero supplementation with a methyl-rich diet. These methylation changes were associated with decreased transcriptional activity and increased disease severity. Runt-related transcription factor 3 (Runx3), a gene known to negatively regulate allergic airway disease, was found to be excessively methylated, and Runx3 mRNA and protein levels were suppressed in progeny exposed in utero to a high-methylation diet. Moreover, treatment with a demethylating agent increased Runx3 gene transcription, further supporting our claim that a methyl-rich diet can affect methylation status and consequent transcriptional regulation. Our findings indicate that dietary factors can modify the heritable risk of allergic airway disease through epigenetic mechanisms during a vulnerable period of fetal development in mice.
John W. Hollingsworth, Shuichiro Maruoka, Kathy Boon, Stavros Garantziotis, Zhuowei Li, John Tomfohr, Nathaniel Bailey, Erin N. Potts, Gregory Whitehead, David M. Brass, David A. Schwartz
The threat of avian influenza A (H5N1) infection in humans remains a global health concern. Current influenza vaccines stimulate antibody responses against the surface glycoproteins but are ineffective against strains that have undergone significant antigenic variation. An alternative approach is to stimulate pre-existing memory T cells established by seasonal human influenza A infection that could cross-react with H5N1 by targeting highly conserved internal proteins. To determine how common cross-reactive T cells are, we performed a comprehensive ex vivo analysis of cross-reactive CD4+ and CD8+ memory T cell responses to overlapping peptides spanning the full proteome of influenza A/Viet Nam/CL26/2005 (H5N1) and influenza A/New York/232/2004 (H3N2) in healthy individuals from the United Kingdom and Viet Nam. Memory CD4+ and CD8+ T cells isolated from the majority of participants exhibited human influenza–specific responses and showed cross-recognition of at least one H5N1 internal protein. Participant CD4+ and CD8+ T cells recognized multiple synthesized influenza peptides, including peptides from the H5N1 strain. Matrix protein 1 (M1) and nucleoprotein (NP) were the immunodominant targets of cross-recognition. In addition, cross-reactive CD4+ and CD8+ T cells recognized target cells infected with recombinant vaccinia viruses expressing either H5N1 M1 or NP. Thus, vaccine formulas inducing heterosubtypic T cell–mediated immunity may confer broad protection against avian and human influenza A viruses.
Laurel Yong-Hwa Lee, Do Lien Anh Ha, Cameron Simmons, Menno D. de Jong, Nguyen Van Vinh Chau, Reto Schumacher, Yan Chun Peng, Andrew J. McMichael, Jeremy J. Farrar, Geoffrey L. Smith, Alain R.M. Townsend, Brigitte A. Askonas, Sarah Rowland-Jones, Tao Dong
No posts were found with this tag.