Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Neuroscience

  • 653 Articles
  • 7 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 54
  • 55
  • 56
  • …
  • 65
  • 66
  • Next →
Axon initial segment dysfunction in a mouse model of genetic epilepsy with febrile seizures plus
Verena C. Wimmer, … , Heinz Beck, Steven Petrou
Verena C. Wimmer, … , Heinz Beck, Steven Petrou
Published July 12, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI42219.
View: Text | PDF

Axon initial segment dysfunction in a mouse model of genetic epilepsy with febrile seizures plus

  • Text
  • PDF
Abstract

Febrile seizures are a common childhood seizure disorder and a defining feature of genetic epilepsy with febrile seizures plus (GEFS+), a syndrome frequently associated with Na+ channel mutations. Here, we describe the creation of a knockin mouse heterozygous for the C121W mutation of the β1 Na+ channel accessory subunit seen in patients with GEFS+. Heterozygous mice with increased core temperature displayed behavioral arrest and were more susceptible to thermal challenge than wild-type mice. Wild-type β1 was most concentrated in the membrane of axon initial segments (AIS) of pyramidal neurons, while the β1(C121W) mutant subunit was excluded from AIS membranes. In addition, AIS function, an indicator of neuronal excitability, was substantially enhanced in hippocampal pyramidal neurons of the heterozygous mouse specifically at higher temperatures. Computational modeling predicted that this enhanced excitability was caused by hyperpolarized voltage activation of AIS Na+ channels. This heat-sensitive increased neuronal excitability presumably contributed to the heightened thermal seizure susceptibility and epileptiform discharges seen in patients and mice with β1(C121W) subunits. We therefore conclude that Na+ channel β1 subunits modulate AIS excitability and that epilepsy can arise if this modulation is impaired.

Authors

Verena C. Wimmer, Christopher A. Reid, Suzanne Mitchell, Kay L. Richards, Byron B. Scaf, Bryan T. Leaw, Elisa L. Hill, Michel Royeck, Marie-Therese Horstmann, Brett A. Cromer, Philip J. Davies, Ruwei Xu, Holger Lerche, Samuel F. Berkovic, Heinz Beck, Steven Petrou

×

Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease
Carine Karachi, … , Etienne C. Hirsch, Chantal François
Carine Karachi, … , Etienne C. Hirsch, Chantal François
Published July 12, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI42642.
View: Text | PDF

Cholinergic mesencephalic neurons are involved in gait and postural disorders in Parkinson disease

  • Text
  • PDF
Abstract

Gait disorders and postural instability, which are commonly observed in elderly patients with Parkinson disease (PD), respond poorly to dopaminergic agents used to treat other parkinsonian symptoms. The brain structures underlying gait disorders and falls in PD and aging remain to be characterized. Using functional MRI in healthy human subjects, we have shown here that activity of the mesencephalic locomotor region (MLR), which is composed of the pedunculopontine nucleus (PPN) and the adjacent cuneiform nucleus, was modulated by the speed of imagined gait, with faster imagined gait activating a discrete cluster within the MLR. Furthermore, the presence of gait disorders in patients with PD and in aged monkeys rendered parkinsonian by MPTP intoxication correlated with loss of PPN cholinergic neurons. Bilateral lesioning of the cholinergic part of the PPN induced gait and postural deficits in nondopaminergic lesioned monkeys. Our data therefore reveal that the cholinergic neurons of the PPN play a central role in controlling gait and posture and represent a possible target for pharmacological treatment of gait disorders in PD.

Authors

Carine Karachi, David Grabli, Frédéric A. Bernard, Dominique Tandé, Nicolas Wattiez, Hayat Belaid, Eric Bardinet, Annick Prigent, Hans-Peter Nothacker, Stéphane Hunot, Andreas Hartmann, Stéphane Lehéricy, Etienne C. Hirsch, Chantal François

×

A molecular switch controls interspecies prion disease transmission in mice
Christina J. Sigurdson, … , Kurt Wüthrich, Adriano Aguzzi
Christina J. Sigurdson, … , Kurt Wüthrich, Adriano Aguzzi
Published June 14, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI42051.
View: Text | PDF

A molecular switch controls interspecies prion disease transmission in mice

  • Text
  • PDF
Abstract

Transmissible spongiform encephalopathies are lethal neurodegenerative disorders that present with aggregated forms of the cellular prion protein (PrPC), which are known as PrPSc. Prions from different species vary considerably in their transmissibility to xenogeneic hosts. The variable transmission barriers depend on sequence differences between incoming PrPSc and host PrPC and additionally, on strain-dependent conformational properties of PrPSc. The β2-α2 loop region within PrPC varies substantially between species, with its structure being influenced by the residue types in the 2 amino acid sequence positions 170 (most commonly S or N) and 174 (N or T). In this study, we inoculated prions from 5 different species into transgenic mice expressing either disordered-loop or rigid-loop PrPC variants. Similar β2-α2 loop structures correlated with efficient transmission, whereas dissimilar loops correlated with strong transmission barriers. We then classified literature data on cross-species transmission according to the 170S/N polymorphism. Transmission barriers were generally low between species with the same amino acid residue in position 170 and high between those with different residues. These findings point to a triggering role of the local β2-α2 loop structure for prion transmissibility between different species.

Authors

Christina J. Sigurdson, K. Peter R. Nilsson, Simone Hornemann, Giuseppe Manco, Natalia Fernández-Borges, Petra Schwarz, Joaquín Castilla, Kurt Wüthrich, Adriano Aguzzi

×

NFAT/Fas signaling mediates the neuronal apoptosis and motor side effects of GSK-3 inhibition in a mouse model of lithium therapy
Raquel Gómez-Sintes, José J. Lucas
Raquel Gómez-Sintes, José J. Lucas
Published June 7, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI37873.
View: Text | PDF

NFAT/Fas signaling mediates the neuronal apoptosis and motor side effects of GSK-3 inhibition in a mouse model of lithium therapy

  • Text
  • PDF
Abstract

Use of lithium, the mainstay for treatment of bipolar disorder, is limited by its frequent neurological side effects and its risk for overdose-induced toxicity. Recently, lithium has also been proposed as a treatment for Alzheimer disease and other neurodegenerative conditions, but clinical trials have been hampered by its prominent side effects in the elderly. The mechanisms underlying both the positive and negative effects of lithium are not fully known. Lithium inhibits glycogen synthase kinase–3 (GSK-3) in vivo, and we recently reported neuronal apoptosis and motor deficits in dominant-negative GSK-3–transgenic mice. We hypothesized that therapeutic levels of lithium could also induce neuronal loss through GSK-3 inhibition. Here we report induction of neuronal apoptosis in various brain regions and the presence of motor deficits in mice treated chronically with lithium. We found that GSK-3 inhibition increased translocation of nuclear factor of activated T cells c3/4 (NFATc3/4) transcription factors to the nucleus, leading to increased Fas ligand (FasL) levels and Fas activation. Lithium-induced apoptosis and motor deficits were absent when NFAT nuclear translocation was prevented by cyclosporin A administration and in Fas-deficient lpr mice. The results of these studies suggest a mechanism for lithium-induced neuronal and motor toxicity. These findings may enable the development of combined therapies that diminish the toxicities of lithium and possibly other GSK-3 inhibitors and extend their potential to the treatment of Alzheimer disease and other neurodegenerative conditions.

Authors

Raquel Gómez-Sintes, José J. Lucas

×

NMDA-induced neuronal survival is mediated through nuclear factor I-A in mice
Sika Zheng, … , Ted M. Dawson, Valina L. Dawson
Sika Zheng, … , Ted M. Dawson, Valina L. Dawson
Published June 1, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI33144.
View: Text | PDF

NMDA-induced neuronal survival is mediated through nuclear factor I-A in mice

  • Text
  • PDF
Abstract

Identification of the signaling pathways that mediate neuronal survival signaling could lead to new therapeutic targets for neurologic disorders and stroke. Sublethal doses of NMDA can induce robust endogenous protective mechanisms in neurons. Through differential analysis of primary library expression and microarray analyses, here we have shown that nuclear factor I, subtype A (NFI-A), a member of the NFI/CAAT-box transcription factor family, is induced in mouse neurons by NMDA receptor activation in a NOS- and ERK-dependent manner. Knockdown of NFI-A induction using siRNA substantially reduced the neuroprotective effects of sublethal doses of NMDA. Further analysis indicated that NFI-A transcriptional activity was required for the neuroprotective effects of NMDA receptor activation. Additional evidence of the neuroprotective effects of NFI-A was provided by the observations that Nfia–/– neurons were highly sensitive to NMDA-induced excitotoxicity and were more susceptible to developmental cell death than wild-type neurons and that Nfia+/– mice were more sensitive to NMDA-induced intrastriatal lesions than were wild-type animals. These results identify NFI-A as what we believe to be a novel neuroprotective transcription factor with implications in neuroprotection and neuronal plasticity following NMDA receptor activation.

Authors

Sika Zheng, Stephen M. Eacker, Suk Jin Hong, Richard M. Gronostajski, Ted M. Dawson, Valina L. Dawson

×

Tissue-type plasminogen activator is a neuroprotectant in the mouse hippocampus
Ramiro Echeverry, … , Johanna Guzman, Manuel Yepes
Ramiro Echeverry, … , Johanna Guzman, Manuel Yepes
Published May 3, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI41722.
View: Text | PDF

Tissue-type plasminogen activator is a neuroprotectant in the mouse hippocampus

  • Text
  • PDF
Abstract

The best-known function of the serine protease tissue-type plasminogen activator (tPA) is as a thrombolytic enzyme. However, it is also found in structures of the brain that are highly vulnerable to hypoxia-induced cell death, where its association with neuronal survival is poorly understood. Here, we have demonstrated that hippocampal areas of the mouse brain lacking tPA activity are more vulnerable to neuronal death following an ischemic insult. We found that sublethal hypoxia, which elicits tolerance to subsequent lethal hypoxic/ischemic injury in a natural process known as ischemic preconditioning (IPC), induced a rapid release of neuronal tPA. Treatment of hippocampal neurons with tPA induced tolerance against a lethal hypoxic insult applied either immediately following insult (early IPC) or 24 hours later (delayed IPC). tPA-induced early IPC was independent of the proteolytic activity of tPA and required the engagement of a member of the LDL receptor family. In contrast, tPA-induced delayed IPC required the proteolytic activity of tPA and was mediated by plasmin, the NMDA receptor, and PKB phosphorylation. We also found that IPC in vivo increased tPA activity in the cornu ammonis area 1 (CA1) layer and Akt phosphorylation in the hippocampus, as well as ischemic tolerance in wild-type but not tPA- or plasminogen-deficient mice. These data show that tPA can act as an endogenous neuroprotectant in the murine hippocampus.

Authors

Ramiro Echeverry, Jialing Wu, Woldeab B. Haile, Johanna Guzman, Manuel Yepes

×

Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents
Stephen M. Massa, … , Jayakumar Rajadas, Frank M. Longo
Stephen M. Massa, … , Jayakumar Rajadas, Frank M. Longo
Published April 19, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI41356.
View: Text | PDF

Small molecule BDNF mimetics activate TrkB signaling and prevent neuronal degeneration in rodents

  • Text
  • PDF
Abstract

Brain-derived neurotrophic factor (BDNF) activates the receptor tropomyosin-related kinase B (TrkB) with high potency and specificity, promoting neuronal survival, differentiation, and synaptic function. Correlations between altered BDNF expression and/or function and mechanism(s) underlying numerous neurodegenerative conditions, including Alzheimer disease and traumatic brain injury, suggest that TrkB agonists might have therapeutic potential. Using in silico screening with a BDNF loop–domain pharmacophore, followed by low-throughput in vitro screening in mouse fetal hippocampal neurons, we have efficiently identified small molecules with nanomolar neurotrophic activity specific to TrkB versus other Trk family members. Neurotrophic activity was dependent on TrkB and its downstream targets, although compound-induced signaling activation kinetics differed from those triggered by BDNF. A selected prototype compound demonstrated binding specificity to the extracellular domain of TrkB. In in vitro models of neurodegenerative disease, it prevented neuronal degeneration with efficacy equal to that of BDNF, and when administered in vivo, it caused hippocampal and striatal TrkB activation in mice and improved motor learning after traumatic brain injury in rats. These studies demonstrate the utility of loop modeling in drug discovery and reveal what we believe to be the first reported small molecules derived from a targeted BDNF domain that specifically activate TrkB.We propose that these compounds constitute a novel group of tools for the study of TrkB signaling and may provide leads for developing new therapeutic agents for neurodegenerative diseases.

Authors

Stephen M. Massa, Tao Yang, Youmei Xie, Jian Shi, Mehmet Bilgen, Jeffrey N. Joyce, Dean Nehama, Jayakumar Rajadas, Frank M. Longo

×

CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy
Marco A. Passini, … , Lamya S. Shihabuddin, Seng H. Cheng
Marco A. Passini, … , Lamya S. Shihabuddin, Seng H. Cheng
Published March 15, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI41615.
View: Text | PDF

CNS-targeted gene therapy improves survival and motor function in a mouse model of spinal muscular atrophy

  • Text
  • PDF
Abstract

Spinal muscular atrophy (SMA) is a neuromuscular disease caused by a deficiency of survival motor neuron (SMN) due to mutations in the SMN1 gene. In this study, an adeno-associated virus (AAV) vector expressing human SMN (AAV8-hSMN) was injected at birth into the CNS of mice modeling SMA. Western blot analysis showed that these injections resulted in widespread expression of SMN throughout the spinal cord, and this translated into robust improvement in skeletal muscle physiology, including increased myofiber size and improved neuromuscular junction architecture. Treated mice also displayed substantial improvements on behavioral tests of muscle strength, coordination, and locomotion, indicating that the neuromuscular junction was functional. Treatment with AAV8-hSMN increased the median life span of mice with SMA-like disease to 50 days compared with 15 days for untreated controls. Moreover, injecting mice with SMA-like disease with a human SMN–expressing self-complementary AAV vector — a vector that leads to earlier onset of gene expression compared with standard AAV vectors — led to improved efficacy of gene therapy, including a substantial extension in median survival to 157 days. These data indicate that CNS-directed, AAV-mediated SMN augmentation is highly efficacious in addressing both neuronal and muscular pathologies in a severe mouse model of SMA.

Authors

Marco A. Passini, Jie Bu, Eric M. Roskelley, Amy M. Richards, S. Pablo Sardi, Catherine R. O’Riordan, Katherine W. Klinger, Lamya S. Shihabuddin, Seng H. Cheng

×

Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease
Anne Joutel, … , Pierre Lacombe, Norbert Hubner
Anne Joutel, … , Pierre Lacombe, Norbert Hubner
Published January 11, 2010
Citation Information: J Clin Invest. 2010. https://doi.org/10.1172/JCI39733.
View: Text | PDF

Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease

  • Text
  • PDF
Abstract

Cerebral ischemic small vessel disease (SVD) is the leading cause of vascular dementia and a major contributor to stroke in humans. Dominant mutations in NOTCH3 cause cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a genetic archetype of cerebral ischemic SVD. Progress toward understanding the pathogenesis of this disease and developing effective therapies has been hampered by the lack of a good animal model. Here, we report the development of a mouse model for CADASIL via the introduction of a CADASIL-causing Notch3 point mutation into a large P1-derived artificial chromosome (PAC). In vivo expression of the mutated PAC transgene in the mouse reproduced the endogenous Notch3 expression pattern and main pathological features of CADASIL, including Notch3 extracellular domain aggregates and granular osmiophilic material (GOM) deposits in brain vessels, progressive white matter damage, and reduced cerebral blood flow. Mutant mice displayed attenuated myogenic responses and reduced caliber of brain arteries as well as impaired cerebrovascular autoregulation and functional hyperemia. Further, we identified a substantial reduction of white matter capillary density. These neuropathological changes occurred in the absence of either histologically detectable alterations in cerebral artery structure or blood-brain barrier breakdown. These studies provide in vivo evidence for cerebrovascular dysfunction and microcirculatory failure as key contributors to hypoperfusion and white matter damage in this genetic model of ischemic SVD.

Authors

Anne Joutel, Marie Monet-Leprêtre, Claudia Gosele, Céline Baron-Menguy, Annette Hammes, Sabine Schmidt, Barbara Lemaire-Carrette, Valérie Domenga, Andreas Schedl, Pierre Lacombe, Norbert Hubner

×

TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury
Koichi Obata, … , Makoto Tominaga, Koichi Noguchi
Koichi Obata, … , Makoto Tominaga, Koichi Noguchi
Published January 4, 2010
Citation Information: J Clin Invest. 2010;120(1):394-394. https://doi.org/10.1172/JCI25437C1.
View: Text | PDF | Amended Article

TRPA1 induced in sensory neurons contributes to cold hyperalgesia after inflammation and nerve injury

  • Text
  • PDF
Abstract

Authors

Koichi Obata, Hirokazu Katsura, Toshiyuki Mizushima, Hiroki Yamanaka, Kimiko Kobayashi, Yi Dai, Tetsuo Fukuoka, Atsushi Tokunaga, Makoto Tominaga, Koichi Noguchi

×
  • ← Previous
  • 1
  • 2
  • …
  • 54
  • 55
  • 56
  • …
  • 65
  • 66
  • Next →
DREAM suppression in Huntington’s disease
José Naranjo and colleagues reveal that downregulation of DREAM mediates derepression of ATF6, and this elevation of ATF6 plays an early neuroprotective role in Huntington’s disease…
Published January 11, 2016
Scientific Show StopperNeuroscience

Extra-cerebellar motor symptoms in Angelman’s syndrome
Caroline Bruinsma and colleagues evaluated cerebellar involvement in Angelman’s Syndrome motor deficits…
Published October 20, 2015
Scientific Show StopperNeuroscience

An epigenetic intervention for neurodegenerative diseases
Eva Benito and colleagues demonstrate that SAHA, a histone-deacetylase inhibitor, improves spatial memory and selectively regulates the neuronal epigenome in a mouse model of neurodegeneration…
Published August 17, 2015
Scientific Show StopperNeuroscience

Genetic and environmental interactions in Parkinson’s disease
Alevtina Zharikov and colleagues reveal that interplay between α-synuclein and environmental toxin exposure influences parkinsonian neurodegeneration…
Published June 15, 2015
Scientific Show StopperNeuroscience

TREM2 keeps myelinated axons under wraps
Pietro Poliani, Yaming Wang, and colleagues demonstrate that TREM2 deficiency reduces age-associated expansion of microglia and microglia-dependent remyelination…
Published April 20, 2015
Scientific Show StopperNeuroscience

Synergy among Parkinson’s disease-associated genes
Durga Meka and colleagues demonstrate that crosstalk between parkin and RET maintains mitochondrial integrity and protects dopaminergic neurons…
Published March 30, 2015
Scientific Show StopperNeuroscience

A model of periventricular leukomalacia
Tamar Licht, Talia Dor-Wollman and colleagues demonstrate that specific vulnerability of immature blood vessels surrounding ventricles predisposes to hypoxia-induced periventricular leukomalacia…
Published February 17, 2015
Scientific Show StopperNeuroscience
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts