Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Immune Environment in Glioblastoma (Feb 2023)
    • Korsmeyer Award 25th Anniversary Collection (Jan 2023)
    • Aging (Jul 2022)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Research letters
    • Letters to the editor
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Research letters
  • Letters to the editor
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Neurosciences

  • 550 Articles
  • 7 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 53
  • 54
  • 55
  • Next →
Alimentary tract innervation deficits and dysfunction in mice lacking GDNF family receptor α2
Jari Rossi, … , Mikael Segerstråle, Matti S. Airaksinen
Jari Rossi, … , Mikael Segerstråle, Matti S. Airaksinen
Published September 1, 2003
Citation Information: J Clin Invest. 2003;112(5):707-716. https://doi.org/10.1172/JCI17995.
View: Text | PDF

Alimentary tract innervation deficits and dysfunction in mice lacking GDNF family receptor α2

  • Text
  • PDF
Abstract

Subsets of parasympathetic and enteric neurons require neurturin signaling via glial cell line–derived neurotrophic factor family receptor α2 (GFRα2) for development and target innervation. Why GFRα2-deficient (Gfra2–/–) mice grow poorly has remained unclear. Here, we analyzed several factors that could contribute to the growth retardation. Neurturin mRNA was localized in the gut circular muscle. GFRα2 protein was expressed in most substance P–containing myenteric neurons, in most intrapancreatic neurons, and in surrounding glial cells. In the Gfra2–/– mice, density of substance P–containing myenteric ganglion cells and nerve bundles in the myenteric ganglion cell layer was significantly reduced, and transit of test material through small intestine was 25% slower compared to wild-type mice. Importantly, the knockout mice had approximately 80% fewer intrapancreatic neurons, severely impaired cholinergic innervation of the exocrine but not the endocrine pancreas, and increased fecal fat content. Vagally mediated stimulation of pancreatic secretion by 2-deoxy-glucose in vivo was virtually abolished. Retarded growth of the Gfra2–/– mice was accompanied by reduced fat mass and elevated basal metabolic rate. Moreover, the knockout mice drank more water than wild-type controls, and wet-mash feeding resulted in partial growth rescue. Taken together, the results suggest that the growth retardation in mice lacking GFRα2 is largely due to impaired salivary and pancreatic secretion and intestinal dysmotility.

Authors

Jari Rossi, Karl-Heinz Herzig, Vootele Võikar, Päivi H. Hiltunen, Mikael Segerstråle, Matti S. Airaksinen

×

Dysregulated Sonic hedgehog signaling and medulloblastoma consequent to IFN-α–stimulated STAT2-independent production of IFN-γ in the brain
Jianping Wang, … , Christian Schindler, Iain L. Campbell
Jianping Wang, … , Christian Schindler, Iain L. Campbell
Published August 15, 2003
Citation Information: J Clin Invest. 2003;112(4):535-543. https://doi.org/10.1172/JCI18637.
View: Text | PDF

Dysregulated Sonic hedgehog signaling and medulloblastoma consequent to IFN-α–stimulated STAT2-independent production of IFN-γ in the brain

  • Text
  • PDF
Abstract

The type I IFNs (IFN-α and IFN-β), which are crucial in antiviral defense and immune regulation, signal via the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway with activation of STAT1 and STAT2. Here, the function of STAT2 was studied in transgenic mice (termed GIFN/STAT2–/–) with CNS production of IFN-α. Surprisingly, GIFN/STAT2–/–, but not GIFN/STAT1-null, transgenic mice, with CNS production of IFN-α, died prematurely with medulloblastoma. An immune response also induced in the brain of the GIFN/STAT2–/– mice was associated with IFN-γ gene expression by CD3+ T cells and the activation of the STAT1, STAT3, STAT4, and STAT5 molecules. Expression of the Sonic hedgehog (Shh) and the downstream transcriptional factor Gli-1 genes, implicated in the pathogenesis of medulloblastoma, was found to be significantly increased and cotranscribed in cerebellar granule neurons of the GIFN/STAT2–/– mice. IFN-γ, but not IFN-α, induced STAT1-dependent expression of the Shh gene in cultured cerebellar granule neurons. Thus, there is an unexpected and extraordinarily adverse biological potency of IFN-α in the CNS when the primary signal transduction molecule STAT2 is absent. Moreover, a hitherto unknown role is indicated for the immune system in the pathogenesis of developmental disorders and tumorigenesis of the CNS via dysregulated Shh signaling mediated by IFN-γ.

Authors

Jianping Wang, Ngan Pham-Mitchell, Christian Schindler, Iain L. Campbell

×

NSAIDs and enantiomers of flurbiprofen target γ-secretase and lower Aβ42 in vivo
Jason L. Eriksen, … , Edward H. Koo, Todd E. Golde
Jason L. Eriksen, … , Edward H. Koo, Todd E. Golde
Published August 1, 2003
Citation Information: J Clin Invest. 2003;112(3):440-449. https://doi.org/10.1172/JCI18162.
View: Text | PDF

NSAIDs and enantiomers of flurbiprofen target γ-secretase and lower Aβ42 in vivo

  • Text
  • PDF
Abstract

Epidemiologic studies demonstrate that long-term use of NSAIDs is associated with a reduced risk for the development of Alzheimer disease (AD). In this study, 20 commonly used NSAIDs, dapsone, and enantiomers of flurbiprofen were analyzed for their ability to lower the level of the 42-amino-acid form of amyloid β protein (Aβ42) in a human H4 cell line. Thirteen of the NSAIDs and the enantiomers of flurbiprofen were then tested in acute dosing studies in amyloid β protein precursor (APP) transgenic mice, and plasma and brain levels of Aβ and the drug were evaluated. These studies show that (a) eight FDA-approved NSAIDs lower Aβ42 in vivo, (b) the ability of an NSAID to lower Aβ42 levels in cell culture is highly predicative of its in vivo activity, (c) in vivo Aβ42 lowering in mice occurs at drug levels achievable in humans, and (d) there is a significant correlation between Aβ42 lowering and levels of ibuprofen. Importantly, flurbiprofen and its enantiomers selectively lower Aβ42 levels in broken cell γ-secretase assays, indicating that these compounds directly target the γ-secretase complex that generates Aβ from APP. Of the compounds tested, meclofenamic acid, racemic flurbiprofen, and the purified R and S enantiomers of flurbiprofen lowered Aβ42 levels to the greatest extent. Because R-flurbiprofen reduces Aβ42 levels by targeting γ-secretase and has reduced side effects related to inhibition of cyclooxygenase (COX), it is an excellent candidate for clinical testing as an Aβ42 lowering agent.

Authors

Jason L. Eriksen, Sarah A. Sagi, Tawnya E. Smith, Sascha Weggen, Pritam Das, D.C. McLendon, Victor V. Ozols, Kevin W. Jessing, Kenton H. Zavitz, Edward H. Koo, Todd E. Golde

×

VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia
Yunjuan Sun, … , Anna Logvinova, David A. Greenberg
Yunjuan Sun, … , Anna Logvinova, David A. Greenberg
Published June 15, 2003
Citation Information: J Clin Invest. 2003;111(12):1843-1851. https://doi.org/10.1172/JCI17977.
View: Text | PDF

VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia

  • Text
  • PDF
Abstract

Vascular endothelial growth factor (VEGF) is an angiogenic protein with therapeutic potential in ischemic disorders, including stroke. VEGF confers neuroprotection and promotes neurogenesis and cerebral angiogenesis, but the manner in which these effects may interact in the ischemic brain is poorly understood. We produced focal cerebral ischemia by middle cerebral artery occlusion for 90 minutes in the adult rat brain and measured infarct size, neurological function, BrdU labeling of neuroproliferative zones, and vWF-immunoreactive vascular profiles, without and with intracerebroventricular administration of VEGF on days 1–3 of reperfusion. VEGF reduced infarct size, improved neurological performance, enhanced the delayed survival of newborn neurons in the dentate gyrus and subventricular zone, and stimulated angiogenesis in the striatal ischemic penumbra, but not the dentate gyrus. We conclude that in the ischemic brain VEGF exerts an acute neuroprotective effect, as well as longer latency effects on survival of new neurons and on angiogenesis, and that these effects appear to operate independently. VEGF may, therefore, improve histological and functional outcome from stroke through multiple mechanisms.

Authors

Yunjuan Sun, Kunlin Jin, Lin Xie, Jocelyn Childs, Xiao Ou Mao, Anna Logvinova, David A. Greenberg

×

Anti-inflammatory properties of the μ opioid receptor support its use in the treatment of colon inflammation
David Philippe, … , Brigitte L. Kieffer, Pierre Desreumaux
David Philippe, … , Brigitte L. Kieffer, Pierre Desreumaux
Published May 1, 2003
Citation Information: J Clin Invest. 2003;111(9):1329-1338. https://doi.org/10.1172/JCI16750.
View: Text | PDF

Anti-inflammatory properties of the μ opioid receptor support its use in the treatment of colon inflammation

  • Text
  • PDF
Abstract

The physiologic role of the μ opioid receptor (MOR) in gut nociception, motility, and secretion is well established. To evaluate whether MOR may also be involved in controlling gut inflammation, we first showed that subcutaneous administration of selective peripheral MOR agonists, named DALDA and DAMGO, significantly reduces inflammation in two experimental models of colitis induced by administration of 2,4,6-trinitrobenzene sulfonic acid (TNBS) or peripheral expansion of CD4+ T cells in mice. This therapeutic effect was almost completely abolished by concomitant administration of the opioid antagonist naloxone. Evidence of a genetic role for MOR in the control of gut inflammation was provided by showing that MOR-deficient mice were highly susceptible to colon inflammation, with a 50% mortality rate occurring 3 days after TNBS administration. The mechanistic basis of these observations suggests that the anti-inflammatory effects of MOR in the colon are mediated through the regulation of cytokine production and T cell proliferation, two important immunologic events required for the development of colon inflammation in mice and patients with inflammatory bowel disease (IBD). These data provide evidence that MOR plays a role in the control of gut inflammation and suggest that MOR agonists might be new therapeutic molecules in IBD.

Authors

David Philippe, Laurent Dubuquoy, Hervé Groux, Valérie Brun, Myriam Tran Van Chuoï-Mariot, Claire Gaveriaux-Ruff, Jean-Frédéric Colombel, Brigitte L. Kieffer, Pierre Desreumaux

×

EGF amplifies the replacement of parvalbumin-expressing striatal interneurons after ischemia
Tetsuyuki Teramoto, … , Jean-Christophe Plumier, Michael A. Moskowitz
Tetsuyuki Teramoto, … , Jean-Christophe Plumier, Michael A. Moskowitz
Published April 15, 2003
Citation Information: J Clin Invest. 2003;111(8):1125-1132. https://doi.org/10.1172/JCI17170.
View: Text | PDF

EGF amplifies the replacement of parvalbumin-expressing striatal interneurons after ischemia

  • Text
  • PDF
Abstract

EGF promotes proliferation and migration of stem/progenitor cells in the normal adult brain. The effect of epidermal growth factor on neurogenesis in ischemic brain is unknown, however. Here we show that intraventricular administration of EGF and albumin augments 100-fold neuronal replacement in the injured adult mouse striatum after cerebral ischemia. Newly born immature neurons migrate into the ischemic lesion and differentiate into mature parvalbumin-expressing neurons, replacing more than 20% of the interneurons lost by 13 weeks after ischemia and representing 2% of the total BrdU-labeled cells. These data suggest that administration of EGF and albumin could be used to manipulate endogenous neurogenesis in the injured brain and to promote brain self-repair.

Authors

Tetsuyuki Teramoto, Jianhua Qiu, Jean-Christophe Plumier, Michael A. Moskowitz

×

Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice
Tomonori Kaifu, … , Hiroaki Asou, Toshiyuki Takai
Tomonori Kaifu, … , Hiroaki Asou, Toshiyuki Takai
Published February 1, 2003
Citation Information: J Clin Invest. 2003;111(3):323-332. https://doi.org/10.1172/JCI16923.
View: Text | PDF

Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice

  • Text
  • PDF
Abstract

Deletions in the DAP12 gene in humans result in Nasu-Hakola disease, characterized by a combination of bone fractures and psychotic symptoms similar to schizophrenia, rapidly progressing to presenile dementia. However, it is not known why these disorders develop upon deficiency in DAP12, an immunoreceptor signal activator protein initially identified in the immune system. Here we show that DAP12-deficient (DAP12–/–) mice develop an increased bone mass (osteopetrosis) and a reduction of myelin (hypomyelinosis) accentuated in the thalamus. In vitro osteoclast induction from DAP12–/– bone marrow cells yielded immature cells with attenuated bone resorption activity. Moreover, immature oligodendrocytes were arrested in the vicinity of the thalamus, suggesting that the primary defects in DAP12–/– mice are the developmental arrest of osteoclasts and oligodendrocytes. In addition, the mutant mice also showed synaptic degeneration, impaired prepulse inhibition, which is commonly observed in several neuropsychiatric diseases in humans including schizophrenia, and aberrant electrophysiological profiles in the thalami. These results provide a molecular basis for a unique combination of skeletal and psychotic characteristics of Nasu-Hakola disease as well as for schizophrenia and presenile dementia.

Authors

Tomonori Kaifu, Jin Nakahara, Masanori Inui, Kenichi Mishima, Toshihiko Momiyama, Mitsuji Kaji, Akiko Sugahara, Hisami Koito, Azusa Ujike-Asai, Akira Nakamura, Kiyoshi Kanazawa, Kyoko Tan-Takeuchi, Katsunori Iwasaki, Wayne M. Yokoyama, Akira Kudo, Michihiro Fujiwara, Hiroaki Asou, Toshiyuki Takai

×

Misfolded proteinase K–resistant hyperphosphorylated α-synuclein in aged transgenic mice with locomotor deterioration and in human α-synucleinopathies
Manuela Neumann, … , Hans A. Kretzschmar, Christian Haass
Manuela Neumann, … , Hans A. Kretzschmar, Christian Haass
Published November 15, 2002
Citation Information: J Clin Invest. 2002;110(10):1429-1439. https://doi.org/10.1172/JCI15777.
View: Text | PDF

Misfolded proteinase K–resistant hyperphosphorylated α-synuclein in aged transgenic mice with locomotor deterioration and in human α-synucleinopathies

  • Text
  • PDF
Abstract

Research Article

Authors

Manuela Neumann, Philipp J. Kahle, Benoit I. Giasson, Laurence Ozmen, Edilio Borroni, Will Spooren, Veronika Müller, Sabine Odoy, Hideo Fujiwara, Masato Hasegawa, Takeshi Iwatsubo, John Q. Trojanowski, Hans A. Kretzschmar, Christian Haass

×

Selective parasympathetic innervation of subcutaneous and intra-abdominal fat — functional implications
Felix Kreier, … , Hans P. Sauerwein, Ruud M. Buijs
Felix Kreier, … , Hans P. Sauerwein, Ruud M. Buijs
Published November 1, 2002
Citation Information: J Clin Invest. 2002;110(9):1243-1250. https://doi.org/10.1172/JCI15736.
View: Text | PDF

Selective parasympathetic innervation of subcutaneous and intra-abdominal fat — functional implications

  • Text
  • PDF
Abstract

Research Article

Authors

Felix Kreier, Eric Fliers, Peter J. Voshol, Corbert G. Van Eden, Louis M. Havekes, Andries Kalsbeek, Caroline L. Van Heijningen, Arja A. Sluiter, Thomas C. Mettenleiter, Johannes A. Romijn, Hans P. Sauerwein, Ruud M. Buijs

×

Decreased anxiety-like behavior, reduced stress hormones, and neurosteroid supersensitivity in mice lacking protein kinase Cε
Clyde W. Hodge, … , A. Leslie Morrow, Robert O. Messing
Clyde W. Hodge, … , A. Leslie Morrow, Robert O. Messing
Published October 1, 2002
Citation Information: J Clin Invest. 2002;110(7):1003-1010. https://doi.org/10.1172/JCI15903.
View: Text | PDF

Decreased anxiety-like behavior, reduced stress hormones, and neurosteroid supersensitivity in mice lacking protein kinase Cε

  • Text
  • PDF
Abstract

Research Article

Authors

Clyde W. Hodge, Jacob Raber, Thomas McMahon, Helen Walter, Ana Maria Sanchez-Perez, M. Foster Olive, Kristin Mehmert, A. Leslie Morrow, Robert O. Messing

×
  • ← Previous
  • 1
  • 2
  • …
  • 53
  • 54
  • 55
  • Next →
DREAM suppression in Huntington’s disease
José Naranjo and colleagues reveal that downregulation of DREAM mediates derepression of ATF6, and this elevation of ATF6 plays an early neuroprotective role in Huntington’s disease…
Published January 11, 2016
Scientific Show StopperNeuroscience

Extra-cerebellar motor symptoms in Angelman’s syndrome
Caroline Bruinsma and colleagues evaluated cerebellar involvement in Angelman’s Syndrome motor deficits…
Published October 20, 2015
Scientific Show StopperNeuroscience

An epigenetic intervention for neurodegenerative diseases
Eva Benito and colleagues demonstrate that SAHA, a histone-deacetylase inhibitor, improves spatial memory and selectively regulates the neuronal epigenome in a mouse model of neurodegeneration…
Published August 17, 2015
Scientific Show StopperNeuroscience

Genetic and environmental interactions in Parkinson’s disease
Alevtina Zharikov and colleagues reveal that interplay between α-synuclein and environmental toxin exposure influences parkinsonian neurodegeneration…
Published June 15, 2015
Scientific Show StopperNeuroscience

TREM2 keeps myelinated axons under wraps
Pietro Poliani, Yaming Wang, and colleagues demonstrate that TREM2 deficiency reduces age-associated expansion of microglia and microglia-dependent remyelination…
Published April 20, 2015
Scientific Show StopperNeuroscience

Synergy among Parkinson’s disease-associated genes
Durga Meka and colleagues demonstrate that crosstalk between parkin and RET maintains mitochondrial integrity and protects dopaminergic neurons…
Published March 30, 2015
Scientific Show StopperNeuroscience

A model of periventricular leukomalacia
Tamar Licht, Talia Dor-Wollman and colleagues demonstrate that specific vulnerability of immature blood vessels surrounding ventricles predisposes to hypoxia-induced periventricular leukomalacia…
Published February 17, 2015
Scientific Show StopperNeuroscience
Advertisement

Copyright © 2023 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts