Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Nephrology

  • 204 Articles
  • 11 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 20
  • 21
  • Next →
Crystal deposition triggers tubule dilation that accelerates cystogenesis in polycystic kidney disease
Jacob A. Torres, … , Michal Mrug, Thomas Weimbs
Jacob A. Torres, … , Michal Mrug, Thomas Weimbs
Published July 30, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI128503.
View: Text | PDF

Crystal deposition triggers tubule dilation that accelerates cystogenesis in polycystic kidney disease

  • Text
  • PDF
Abstract

The rate of disease progression in autosomal-dominant (AD) polycystic kidney disease (PKD) exhibits high intra-familial variability suggesting that environmental factors may play a role. We hypothesized that a prevalent form of renal insult may accelerate cystic progression and investigated tubular crystal deposition. We report that calcium oxalate (CaOx) crystal deposition led to rapid tubule dilation, activation of PKD-associated signaling pathways, and hypertrophy in tubule segments along the affected nephrons. Blocking mTOR signaling blunted this response and inhibited efficient excretion of lodged crystals. This mechanism of “flushing out” crystals by purposefully dilating renal tubules has not previously been recognized. Challenging PKD rat models with CaOx crystal deposition, or inducing calcium phosphate deposition by increasing dietary phosphorous intake, led to increased cystogenesis and disease progression. In a cohort of ADPKD patients, lower levels of urinary excretion of citrate, an endogenous inhibitor of calcium crystal formation, correlated with increased disease severity. These results suggest that PKD progression may be accelerated by commonly occurring renal crystal deposition which could be therapeutically controlled by relatively simple measures.

Authors

Jacob A. Torres, Mina Rezaei, Caroline Broderick, Louis Lin, Xiaofang Wang, Bernd Hoppe, Benjamin D. Cowley, Jr., Vincenzo Savica, Vicente E. Torres, Saeed Khan, Ross P. Holmes, Michal Mrug, Thomas Weimbs

×

ATP-binding cassette A1 deficiency causes cardiolipin-driven mitochondrial dysfunction in podocytes
G. Michelle Ducasa, … , Flavia Fontanesi, Alessia Fornoni
G. Michelle Ducasa, … , Flavia Fontanesi, Alessia Fornoni
Published July 22, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI125316.
View: Text | PDF

ATP-binding cassette A1 deficiency causes cardiolipin-driven mitochondrial dysfunction in podocytes

  • Text
  • PDF
Abstract

Fibroblasts from patients with Tangier disease carrying ATP-binding cassette A1 (ABCA1) loss-of-function mutations are characterized by cardiolipin accumulation, a mitochondrial-specific phospholipid. Suppression of ABCA1 expression occurs in glomeruli from patients with diabetic kidney disease (DKD) and in human podocytes exposed to DKD sera collected prior to the development of DKD. We demonstrated that siRNA ABCA1 knockdown in podocytes led to reduced oxygen consumption capabilities associated with alterations in the oxidative phosphorylation (OXPHOS) complexes and with cardiolipin accumulation. Podocyte-specific deletion of Abca1 (Abca1fl/fl) rendered mice susceptible to DKD, and pharmacological induction of ABCA1 improved established DKD. This was not mediated by free cholesterol, as genetic deletion of sterol-o-acyltransferase-1 (SOAT1) in Abca1fl/fl mice was sufficient to cause free cholesterol accumulation but did not cause glomerular injury. Instead, cardiolipin mediates ABCA1-dependent susceptibility to podocyte injury, as inhibition of cardiolipin peroxidation with elamipretide improved DKD in vivo and prevented ABCA1-dependent podocyte injury in vitro and in vivo. Collectively, we describe a pathway definitively linking ABCA1 deficiency to cardiolipin-driven mitochondrial dysfunction. We demonstrated that this pathway is relevant to DKD and that ABCA1 inducers or inhibitors of cardiolipin peroxidation may each represent therapeutic strategies for the treatment of established DKD.

Authors

G. Michelle Ducasa, Alla Mitrofanova, Shamroop K. Mallela, Xiaochen Liu, Judith Molina, Alexis Sloan, Christopher E. Pedigo, Mengyuan Ge, Javier Varona Santos, Yanio Hernandez, Jin-Ju Kim, Cyrille Maugeais, Armando J. Mendez, Viji Nair, Matthias Kretzler, George W. Burke, Robert G. Nelson, Yu Ishimoto, Reiko Inagi, Santanu Banerjee, Shaoyi Liu, Hazel H. Szeto, Sandra Merscher, Flavia Fontanesi, Alessia Fornoni

×

Drp1S600 phosphorylation regulates mitochondrial fission and progression of nephropathy in diabetic mice
Daniel L. Galvan, … , Paul Overbeek, Farhad R. Danesh
Daniel L. Galvan, … , Paul Overbeek, Farhad R. Danesh
Published May 7, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI127277.
View: Text | PDF

Drp1S600 phosphorylation regulates mitochondrial fission and progression of nephropathy in diabetic mice

  • Text
  • PDF
Abstract

Phosphorylation of Dynamin-related protein1 (Drp1) represents an important regulatory mechanism for mitochondrial fission. Here we established the role of Drp1 Serine 600 (S600) phosphorylation on mitochondrial fission in vivo, and assessed the functional consequences of targeted elimination of the Drp1S600 phosphorylation site in progression of diabetic nephropathy (DN). We generated a knockin mouse in which S600 was mutated to alanine (Drp1S600A). We found that diabetic Drp1S600A mice exhibited improved biochemical and histological features of DN along with reduced mitochondrial fission and diminished mitochondrial ROS in vivo. Importantly, we observed that the effect of Drp1S600 phosphorylation on mitochondrial fission in the diabetic milieu was stimulus- but not cell type-dependent. Mechanistically, we showed that mitochondrial fission in high glucose conditions occurs through concomitant binding of phospho-Drp1S600 with mitochondrial fission factor (Mff) and actin-related protein 3 (Arp3), ultimately leading to accumulation of F-actin and Drp1 on the mitochondria. Taken together, these findings establish that a single phosphorylation site in Drp1 can regulate mitochondrial fission and progression of DN in vivo, and highlight the stimulus-specific consequences of Drp1S600 phosphorylation on mitochondrial dynamics.

Authors

Daniel L. Galvan, Jianyin Long, Nathanael Green, Benny H. Chang, Jamie S. Lin, Paul T. Schumacker, Luan D. Truong, Paul Overbeek, Farhad R. Danesh

×

Immunoglobulin light chains generate pro-inflammatory and pro-fibrotic kidney injury
Wei-Zhong Ying, … , Lisa M. Curtis, Paul W. Sanders
Wei-Zhong Ying, … , Lisa M. Curtis, Paul W. Sanders
Published April 16, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI125517.
View: Text | PDF

Immunoglobulin light chains generate pro-inflammatory and pro-fibrotic kidney injury

  • Text
  • PDF
Abstract

Because of the less than robust response to therapy and impact on choice of optimal chemotherapy and prognosis, chronic kidney disease has drawn attention in the treatment of multiple myeloma, a malignant hematologic disorder that can produce significant amounts of monoclonal immunoglobulin free light chains. These low molecular weight proteins are relatively freely filtered through the glomerulus and are reabsorbed by the proximal tubule. The present study demonstrated that during the process of metabolism of immunoglobulin free light chains, reactive oxygen species activated the Signal Transducer and Activator of Transcription 1 (STAT1) pathway in proximal tubule epithelium. STAT1 activation served as the seminal signaling molecule that produced the pro-inflammatory molecule, Interleukin-1β, as well as the pro-fibrotic agent, Transforming Growth Factor-β, by this portion of the nephron. These effects occurred in vivo and were produced specifically by the generation of hydrogen peroxide by the VL domain of the light chain. To the extent that the experiments reflect the human condition, these studies offered new insights into the pathogenesis of progressive kidney failure in the setting of lymphoproliferative disorders, such as multiple myeloma, that feature increased circulating levels of monoclonal immunoglobulin fragments that require metabolism by the kidney.

Authors

Wei-Zhong Ying, Xingsheng Li, Sunil Rangarajan, Wenguang Feng, Lisa M. Curtis, Paul W. Sanders

×

Stiripentol protects against calcium oxalate nephrolithiasis and ethylene glycol poisoning
Marine Le Dudal, … , Michel Daudon, Emmanuel Letavernier
Marine Le Dudal, … , Michel Daudon, Emmanuel Letavernier
Published April 4, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI99822.
View: Text | PDF

Stiripentol protects against calcium oxalate nephrolithiasis and ethylene glycol poisoning

  • Text
  • PDF
Abstract

Increased urinary oxalate excretion (hyperoxaluria) promotes the formation of calcium oxalate crystals. Monogenic diseases due to hepatic enzymes deficiency result in chronic hyperoxaluria, promoting end-stage renal disease in children and young adults. Ethylene glycol poisoning also results in hyperoxaluria promoting acute renal failure and frequently death. Stiripentol is an antiepileptic drug used to treat children affected by Dravet syndrome, possibly by inhibiting neuronal lactate dehydrogenase 5 isoenzyme. As this isoenzyme is also the last step of hepatic oxalate production, we hypothesized that Stiripentol would potentially reduce hepatic oxalate production and urine oxalate excretion. In vitro, Stiripentol decreased in a dose-dependent manner the synthesis of oxalate by hepatocytes. In vivo, Stiripentol oral administration reduced significantly urine oxalate excretion in rats. Stiripentol protected kidneys against calcium oxalate crystal deposits in acute ethylene glycol intoxication and chronic calcium oxalate nephropathy models. In both models, Stiripentol improved significantly renal function. Patients affected by Dravet syndrome and treated with Stiripentol had a lower urine oxalate excretion than control patients. A young girl affected by severe type I hyperoxaluria received Stiripentol for several weeks: urine oxalate excretion decreased by two-thirds. Stiripentol is a promising potential therapy against genetic hyperoxaluria and ethylene glycol poisoning.

Authors

Marine Le Dudal, Lea Huguet, Joëlle Perez, Sophie Vandermeersch, Elise Bouderlique, Ellie Tang, Carole Martori, Nicole Chemaly, Rima Nabbout, Jean-Philippe Haymann, Vincent Frochot, Laurent Baud, Georges Deschênes, Michel Daudon, Emmanuel Letavernier

×

FoxO3 activation in hypoxic tubules prevents chronic kidney disease
Ling Li, … , Qais Al-Awqati, Fangming Lin
Ling Li, … , Qais Al-Awqati, Fangming Lin
Published March 26, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI122256.
View: Text | PDF

FoxO3 activation in hypoxic tubules prevents chronic kidney disease

  • Text
  • PDF
Abstract

Acute kidney injury (AKI) can lead to chronic kidney disease (CKD) if injury is severe and/or repair is incomplete. However, the pathogenesis of CKD following renal ischemic injury is not fully understood. Capillary rarefaction and tubular hypoxia are common findings during the AKI to CKD transition. We investigated the tubular stress response to hypoxia and demonstrated that a stress responsive transcription factor, FoxO3, was regulated by prolyl hydroxylase. Hypoxia inhibited FoxO3 prolyl hydroxylation and FoxO3 degradation, thus leading to FoxO3 accumulation and activation in tubular cells. Hypoxia-activated Hif-1α contributed to FoxO3 activation and functioned to protect kidneys, as tubular deletion of Hif-1α decreased hypoxia-induced FoxO3 activation, and resulted in more severe tubular injury and interstitial fibrosis following ischemic injury. Strikingly, tubular deletion of FoxO3 during the AKI to CKD transition aggravated renal structural and functional damage leading to a more profound CKD phenotype. We showed that tubular deletion of FoxO3 resulted in decreased autophagic response and increased oxidative injury, which may explain renal protection by FoxO3. Our study indicates that in the hypoxic kidney, stress responsive transcription factors can be activated for adaptions to counteract hypoxic insults, thus attenuating CKD development.

Authors

Ling Li, Huimin Kang, Qing Zhang, Vivette D. D'Agati, Qais Al-Awqati, Fangming Lin

×

Podocyte histone deacetylase activity regulates murine and human glomerular diseases
Kazunori Inoue, … , Francis P. Wilson, Shuta Ishibe
Kazunori Inoue, … , Francis P. Wilson, Shuta Ishibe
Published February 18, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI124030.
View: Text | PDF

Podocyte histone deacetylase activity regulates murine and human glomerular diseases

  • Text
  • PDF
Abstract

We identified 2 genes, histone deacetylase 1 (HDAC1) and HDAC2, contributing to the pathogenesis of proteinuric kidney diseases, the leading cause of end-stage kidney disease. mRNA expression profiling from proteinuric mouse glomeruli was linked to Connectivity Map databases, identifying HDAC1 and HDAC2 with the differentially expressed gene set reversible by HDAC inhibitors. In numerous progressive glomerular disease models, treatment with valproic acid (a class I HDAC inhibitor) or SAHA (a pan-HDAC inhibitor) mitigated the degree of proteinuria and glomerulosclerosis, leading to a striking increase in survival. Podocyte HDAC1 and HDAC2 activities were increased in mice podocytopathy models, and podocyte-associated Hdac1 and Hdac2 genetic ablation improved proteinuria and glomerulosclerosis. Podocyte early growth response 1 (EGR1) was increased in proteinuric patients and mice in an HDAC1- and HDAC2-dependent manner. Loss of EGR1 in mice reduced proteinuria and glomerulosclerosis. Longitudinal analysis of the multicenter Veterans Aging Cohort Study demonstrated a 30% reduction in mean annual loss of estimated glomerular filtration rate, and this effect was more pronounced in proteinuric patients receiving valproic acid. These results strongly suggest that inhibition of HDAC1 and HDAC2 activities may suppress the progression of human proteinuric kidney diseases through the regulation of EGR1.

Authors

Kazunori Inoue, Geliang Gan, Maria Ciarleglio, Yan Zhang, Xuefei Tian, Christopher E. Pedigo, Corey Cavanaugh, Janet Tate, Ying Wang, Elizabeth Cross, Marwin Groener, Nathan Chai, Zhen Wang, Amy Justice, Zhenhai Zhang, Chirag R. Parikh, Francis P. Wilson, Shuta Ishibe

×

Non-immune cell-derived ICOS ligand functions as a renoprotective αvβ3 integrin-selective antagonist
Kwi Hye Koh, … , Jochen Reiser, Eunsil Hahm
Kwi Hye Koh, … , Jochen Reiser, Eunsil Hahm
Published February 12, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI123386.
View: Text | PDF

Non-immune cell-derived ICOS ligand functions as a renoprotective αvβ3 integrin-selective antagonist

  • Text
  • PDF
Abstract

Soluble urokinase receptor (suPAR) is a circulatory molecule that activates αvβ3 integrin on podocytes, causes foot process effacement, and contributes to proteinuric kidney disease. While active integrin can be targeted by antibodies and small molecules, endogenous inhibitors haven’t been discovered yet. Here we report a novel, renoprotective role for inducible costimulator (ICOS) ligand (ICOSL) in early kidney disease through its selective binding to podocyte αvβ3 integrin. Contrary to ICOSL’s immune-regulatory role, ICOSL in non-hematopoietic cells limited the activation of αvβ3 integrin. Specifically, ICOSL contains arginine-glycine-aspartate (RGD) motif, which allowed for a high affinity and selective binding to αvβ3 and modulation of podocyte adhesion. This binding was largely inhibited either by a synthetic RGD peptide or by a disrupted RGD sequence in ICOSL. ICOSL binding favored the active αvβ3 rather than the inactive form and showed little affinity for other integrins. Consistent with the rapid induction of podocyte ICOSL by inflammatory stimuli, glomerular ICOSL expression was increased in biopsies of early stage human proteinuric kidney diseases. Icosl deficiency in mice resulted in an increased susceptibility to proteinuria that was rescued by recombinant ICOSL. Our work identified a novel role for ICOSL, which serves as an endogenous αvβ3-selective antagonist to maintain glomerular filtration.

Authors

Kwi Hye Koh, Yanxia Cao, Steve Mangos, Nicholas J. Tardi, Ranadheer R. Dande, Ha Won Lee, Beata Samelko, Mehmet M. Altintas, Vincent P. Schmitz, Hyun Lee, Kamalika Mukherjee, Vasil Peev, David J. Cimbaluk, Jochen Reiser, Eunsil Hahm

×

PTEN-induced partial epithelial-mesenchymal transition drives diabetic kidney disease
Yajuan Li, … , Liuqing Yang, Chunru Lin
Yajuan Li, … , Liuqing Yang, Chunru Lin
Published February 11, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI121987.
View: Text | PDF

PTEN-induced partial epithelial-mesenchymal transition drives diabetic kidney disease

  • Text
  • PDF
Abstract

Epithelial-mesenchymal transition (EMT) contributes significantly to interstitial matrix deposition in diabetic kidney disease (DKD). However, detection of EMT in kidney tissue is impracticable, and anti-EMT therapies have long been hindered. We reported that phosphatase and tensin homolog (PTEN) promoted transforming growth factor beta 1 (TGF-β), sonic hedgehog (SHH), connective tissue growth factor (CTGF), interleukin 6 (IL-6), and hyperglycemia-induced EMT when PTEN was modified by a MEX3C-catalyzed K27-linked polyubiquitination at lysine 80 (referred to as PTENK27-polyUb). Genetic inhibition of PTENK27-polyUb alleviated Col4a3 knockout–, folic acid–, and streptozotocin-induced (STZ-induced) kidney injury. Serum and urine PTENK27-polyUb concentrations were negatively correlated with glomerular filtration rate (GFR) for diabetic patients. Mechanistically, PTENK27-polyUb facilitated dephosphorylation and protein stabilization of TWIST, SNAI1, and YAP in renal epithelial cells, leading to enhanced EMT. We identified that a small molecule, triptolide, inhibited MEX3C-catalyzed PTENK27-polyUb and EMT of renal epithelial cells. Treatment with triptolide reduced TWIST, SNAI1, and YAP concurrently and improved kidney health in Col4a3 knockout–, folic acid–injured disease models and STZ-induced, BTBR ob/ob diabetic nephropathy models. Hence, we demonstrated the important role of PTENK27-polyUb in DKD and a promising therapeutic strategy that inhibited the progression of DKD.

Authors

Yajuan Li, Qingsong Hu, Chunlai Li, Ke Liang, Yu Xiang, Heidi Hsiao, Tina K. Nguyen, Peter K. Park, Sergey D. Egranov, Chandrashekar R. Ambati, Nagireddy Putluri, David H. Hawke, Leng Han, Mien-Chie Hung, Farhad R. Danesh, Liuqing Yang, Chunru Lin

×

uPAR isoform 2 forms a dimer and induces severe kidney disease in mice
Changli Wei, … , M. Amin Arnaout, Jochen Reiser
Changli Wei, … , M. Amin Arnaout, Jochen Reiser
Published February 7, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI124793.
View: Text | PDF

uPAR isoform 2 forms a dimer and induces severe kidney disease in mice

  • Text
  • PDF
Abstract

Soluble urokinase plasminogen activator receptor (suPAR) is an immune-derived circulating signaling molecule that has been implicated in chronic kidney disease such as focal segmental glomerulosclerosis (FSGS). Typically, native uPAR (isoform 1) translates to a three-domain protein capable of binding and activating integrins, yet the function of additional isoforms generated by alternative splicing is unknown. Here, we characterized mouse uPAR isoform 2 (msuPAR2), encoding domain I and nearly one-half of domain II, as a dimer in solution, as revealed by 3D electron microscopy structural analysis. In vivo, msuPAR2 transgenic mice exhibited signs of severe renal disease characteristic of FSGS with proteinuria, loss of kidney function and glomerulosclerosis. Sequencing of the glomerular RNAs from msuPAR2-Tg mice revealed differentially expressed gene signature that includes upregulation of the suPAR receptor Itgb3, encoding β3 integrin. Crossing msuPAR2-transgenic mice with three different integrin β3 deficiency models rescued msuPAR2-mediated kidney function. Further analyses indicated a central role for β3 integrin and c-Src in msuPAR2 signaling and in human FSGS kidney biopsies. Administration of Src inhibitors reduced proteinuria in msuPAR2-transgenic mice. In conclusion, mouse uPAR isoform 2 may play an important role in certain forms of scarring kidney disease.

Authors

Changli Wei, Jing Li, Brian D. Adair, Ke Zhu, Jian Cai, Michael Merchant, Beata Samelko, Zhongji Liao, Kwi Hye Koh, Nicholas J. Tardi, Ranadheer R. Dande, Shuangxin Liu, Jianchao Ma, Salvatore DiBartolo, Stefan Hägele, Vasil Peev, Salim S. Hayek, David J. Cimbaluk, Melissa Tracy, Jon B. Klein, Sanja Sever, Sanford J. Shattil, M. Amin Arnaout, Jochen Reiser

×
  • ← Previous
  • 1
  • 2
  • 3
  • 4
  • …
  • 20
  • 21
  • Next →
  • ← Previous
  • 1
  • 2
  • Next →
Local TNF mediates free cholesterol–dependent podocyte injury
In this episode, Alessia Fornoni reveals that TNF promotes free cholesterol–dependent podocyte apoptosis via an NFATc1/ ABCA1-dependent mechanism.
Published August 2, 2016
Author's TakeNephrology

Anti-THSD7A is a bona fide culprit in membranous nephropathy
Nicola M. Tomas, Elion Hoxha, and colleagues provide evidence that anti-THSD7A antibodies promote the development of membranous nephropathy...
Published May 23, 2016
Scientific Show StopperNephrology

Identifying sporadic focal segmental glomerulosclerosis-associated genes
Haiyang Yu, Mykyta Artomov, Sebastian Brähler and colleagues demonstrate the genetic contribution to the development of focal segmental glomerulosclerosis...
Published February 22, 2016
Scientific Show StopperNephrology

DNA replication stress linked to ciliopathies
Gisela Slaats and colleagues reveal that ciliopathy syndrome-associated mutations in CEP290 result in replication errors and DNA damage…
Published August 24, 2015
Scientific Show StopperNephrology

Nephrotic syndrome-associated mutations
Heon Yung Gee, Fujian Zhang, and colleagues reveal that mutations in KANK family genes underlie podocyte dysfunction and are associated with nephrotic syndrome…
Published May 11, 2015
Scientific Show StopperNephrology

Podocyte macropinocytosis
Jun-Jae Chung, Tobias B. Huber, Markus Gödel, and colleagues show that albumin-bound free fatty acids increase fluid-phase uptake in podocytes…
Published April 27, 2015
Scientific Show StopperNephrology

A network of diuretic resistance
Richard Grimm and colleagues use a systems biology approach to uncover mechanisms of renal compensation that lead to diuretic resistance…
Published April 20, 2015
Scientific Show StopperNephrology

KIM-1 protects the kidney after injury
Li Yang, Craig Brooks, and colleagues at Harvard Medical School demonstrate that KIM-1-mediated phagocytosis of apoptotic cells dampens inflammatory responses after kidney injury.. .
Published March 9, 2015
Scientific Show StopperNephrology

Protection against acute kidney injury
Marina Morigi and colleagues demonstrate that sirtuin 3 expression improves survival in a murine model of acute kidney injury...
Published January 20, 2015
Scientific Show StopperNephrology

Helping polycysin-1 reach the surface
Vladimir Gainullin and colleagues reveal that polycystin-2 is required for maturation and surface localization of polycystin-1…
Published January 9, 2015
Scientific Show StopperNephrology
  • ← Previous
  • 1
  • 2
  • Next →
Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts