Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Next-Generation Sequencing in Medicine (Upcoming)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact

Local TNF mediates free cholesterol–dependent podocyte injury

Some patients with diabetes develop diabetic kidney disease (DKD), which can progress to a loss of renal function. High levels of TNF are predictive of disease and organ damage; however, it is not clear how elevated TNF promotes injury. In this episode, Alessia Fornoni reveals that TNF promotes free cholesterol–dependent podocyte apoptosis via an NFATc1/ ABCA1-dependent mechanism. The results of this study indicate that agents targeting cholesterol efflux should be further explored for treating proteinuric kidney diseases.

Published August 2, 2016, by Corinne Williams

Author's TakeNephrology

Related articles

Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury
Christopher E. Pedigo, … , Sandra Merscher, Alessia Fornoni
Christopher E. Pedigo, … , Sandra Merscher, Alessia Fornoni
Published August 2, 2016
Citation Information: J Clin Invest. 2016;126(9):3336-3350. https://doi.org/10.1172/JCI85939.
View: Text | PDF
Research Article Inflammation

Local TNF causes NFATc1-dependent cholesterol-mediated podocyte injury

  • Text
  • PDF
Abstract

High levels of circulating TNF and its receptors, TNFR1 and TNFR2, predict the progression of diabetic kidney disease (DKD), but their contribution to organ damage in DKD remains largely unknown. Here, we investigated the function of local and systemic TNF in podocyte injury. We cultured human podocytes with sera collected from DKD patients, who displayed elevated TNF levels, and focal segmental glomerulosclerosis (FSGS) patients, whose TNF levels resembled those of healthy patients. Exogenous TNF administration or local TNF expression was equally sufficient to cause free cholesterol–dependent apoptosis in podocytes by acting through a dual mechanism that required a reduction in ATP-binding cassette transporter A1–mediated (ABCA1-mediated) cholesterol efflux and reduced cholesterol esterification by sterol-O-acyltransferase 1 (SOAT1). TNF-induced albuminuria was aggravated in mice with podocyte-specific ABCA1 deficiency and was partially prevented by cholesterol depletion with cyclodextrin. TNF-stimulated free cholesterol–dependent apoptosis in podocytes was mediated by nuclear factor of activated T cells 1 (NFATc1). ABCA1 overexpression or cholesterol depletion was sufficient to reduce albuminuria in mice with podocyte-specific NFATc1 activation. Our data implicate an NFATc1/ABCA1-dependent mechanism in which local TNF is sufficient to cause free cholesterol–dependent podocyte injury irrespective of TNF, TNFR1, or TNFR2 serum levels.

Authors

Christopher E. Pedigo, Gloria Michelle Ducasa, Farah Leclercq, Alexis Sloan, Alla Mitrofanova, Tahreem Hashmi, Judith Molina-David, Mengyuan Ge, Mariann I. Lassenius, Carol Forsblom, Markku Lehto, Per-Henrik Groop, Matthias Kretzler, Sean Eddy, Sebastian Martini, Heather Reich, Patricia Wahl, GianMarco Ghiggeri, Christian Faul, George W. Burke III, Oliver Kretz, Tobias B. Huber, Armando J. Mendez, Sandra Merscher, Alessia Fornoni

×
Advertisement

Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts