The roles of neutrophils in renal inflammation are currently unclear. On examining these cells in the unilateral ureteral obstruction murine model of chronic kidney disease, we found that the injured kidney bore a large and rapidly expanding population of neutrophils that expressed the eosinophil marker Siglec-F. We first confirmed that these cells were neutrophils. Siglec-F+ neutrophils were recently detected for the first time by several studies on other disease contexts. We then showed that (i) these cells were derived from conventional neutrophils in the renal vasculature by TGF-β1 and GM-CSF, (ii) they differed from their parent cells by more frequent hypersegmentation, higher expression of pro-fibrotic inflammatory cytokines, and, notably, expression of Collagen 1, and (iii) their depletion reduced collagen deposition and disease progression, but adoptive transfer increased renal fibrosis. These findings have thus unveiled a subtype of neutrophils that participate in renal fibrosis and maybe a new therapeutic target in chronic kidney disease.
Seungwon Ryu, Jae Woo Shin, Soie Kwon, Jiwon Lee, Yong Chul Kim, Yoe-Sik Bae, Yong-Soo Bae, Dong Ki Kim, Yon Su Kim, Seung Hee Yang, Hye Young Kim
The protective human antibody response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus focuses on the spike (S) protein which decorates the virion surface and mediates cell binding and entry. Most SARS-CoV-2 protective antibodies target the receptor-binding domain or a single dominant epitope (‘supersite’) on the N terminal domain (NTD). Here, using the single B cell technology LIBRA-seq, we isolated a large panel of NTD-reactive and SARS-CoV-2 neutralizing antibodies from an individual who had recovered from COVID-19. We found that neutralizing antibodies to the NTD supersite commonly are encoded by the IGHV1-24 gene, forming a genetic cluster that represents a public B cell clonotype. However, we also discovered a rare human antibody, COV2-3434, that recognizes a site of vulnerability on the SARS-CoV-2 S protein in the trimer interface and possesses a distinct class of functional activity. COV2-3434 disrupted the integrity of S protein trimers, inhibited cell-to-cell spread of virus in culture, and conferred protection in human ACE2 transgenic mice against SARS-CoV-2 challenge. This study provides insight about antibody targeting of the S protein trimer interface region, suggesting this region may be a site of virus vulnerability.
Naveenchandra Suryadevara, Andrea R. Shiakolas, Laura A. VanBlargan, Elad Binshtein, Rita E. Chen, James Brett Case, Kevin J. Kramer, Erica C. Armstrong, Luke Myers, Andrew Trivette, Christopher Gainza, Rachel S. Nargi, Christopher N. Selverian, Edgar Davidson, Benjamin J. Doranz, Summer M. Diaz, Laura S Handal, Robert H. Carnahan, Michael S. Diamond, Ivelin S. Georgiev, James E. Crowe Jr.
CD4 T helper (Th) cells play a key role in orchestrating immune responses, but the identity of the CD4 Th cells involved in the anti-tumor immune response remains to be defined. We analyzed the immune cell infiltrates of head and neck squamous cell carcinoma and colorectal cancers and identified a subset of CD4 Th cells distinct from FOXP3+ regulatory T cells that co-express PD-1 and ICOS. These tumor-infiltrating CD4 Th cells (CD4 Th TIL) have a tissue-resident memory phenotype, are present in MHC class II-rich areas and proliferate in the tumor suggesting local antigen recognition. The T-cell receptor repertoire of the PD-1+ICOS+ CD4 Th TIL is oligoclonal, with T-cell clones expanded in the tumor, but present at low frequencies in the periphery. Finally, these PD-1+ICOS+ CD4 Th TIL were shown to recognize both tumor-associated antigens and tumor-specific neoantigens. Our findings provide an approach for isolating tumor-reactive CD4 Th TIL directly ex vivo that will help define their role in the anti-tumor immune response and potentially improve future adoptive T-cell therapy approaches.
Rebekka Duhen, Olivier Fesneau, Kimberly A. Samson, Alexandra K. Frye, Michael Beymer, Venkatesh Rajamanickam, David Ross, Eric Tran, Brady Bernard, Andrew D. Weinberg, Thomas Duhen
SMAD4, a mediator of TGF-β signaling, plays an important role in T cells to prevent inflammatory bowel disease (IBD). However, the precise mechanisms underlying this control remain elusive. Using both genetic and epigenetic approaches, we revealed an unexpected mechanism by which SMAD4 prevents naive CD8+ T cells from becoming pathogenic for the gut. Prior to the engagement of the TGF-β receptor, SMAD4 restrains the epigenetic, transcriptional, and functional landscape of the TGF-β signature in naive CD8+ T cells. Mechanistically, prior to TGF-β signaling, SMAD4 binds to promoters and enhancers of several TGF-β target genes, and by regulating histone deacetylation, suppresses their expression. Consequently, regardless of a TGF-β signal, SMAD4 limits the expression of TGF-β negative feedback loop genes, such as Smad7 and Ski, and likely conditions CD8+ T cells for the immunoregulatory effects of TGF-β. In addition, SMAD4 ablation conferred naive CD8+ T cells with both a superior survival capacity, by enhancing their response to IL-7, as well as an enhanced capacity to be retained within the intestinal epithelium, by promoting the expression of Itgae, which encodes the integrin CD103. Accumulation, epithelial retention, and escape from TGF-β control elicited chronic microbiota-driven CD8+ T cell activation in the gut. Hence, in a TGF-β–independent manner, SMAD4 imprints a program that preconditions naive CD8+ T cell fate, preventing IBD.
Ramdane Igalouzene, Hector Hernandez-Vargas, Nicolas Benech, Alexandre Guyennon, David Bauché, Célia Barrachina, Emeric Dubois, Julien C. Marie, Saïdi M’Homa Soudja
Subendothelial macrophage internalization of modified lipids and foam cell formation are hallmarks of atherosclerosis. Deubiquitinating enzymes (DUBs) are involved in various cellular activities; however, their role in foam cell formation is not fully understood. Here, using a loss-of-function lipid accumulation screening, we identified ubiquitin-specific peptidase 9 X-linked (USP9X) as a factor that suppressed lipid uptake in macrophages. We found that USP9X expression in lesional macrophages was reduced during atherosclerosis development in both humans and rodents. Atherosclerotic lesions from macrophage USP9X-deficient mice showed increased macrophage infiltration, lipid deposition, and necrotic core content than control apolipoprotein E-knockout (Apoe-/-) mice. Additionally, loss-of-function USP9X exacerbated lipid uptake, foam cell formation and inflammatory responses in macrophages. Mechanistically, the class A1 scavenger receptor (SR-A1) was identified as a USP9X substrate that removed the K63 polyubiquitin chain at the K27 site. Genetic or pharmacological inhibition of USP9X increased SR-A1 cell surface internalization following binding of oxidized low-density lipoprotein (ox-LDL). The K27R mutation of SR-A1 dramatically attenuated basal and USP9X knockdown-induced ox-LDL uptake. Moreover, blocking binding of USP9X to SR-A1 with a cell-penetrating peptide exacerbated foam cell formation and atherosclerosis. In this study, we identified macrophage USP9X as a beneficial regulator of atherosclerosis and revealed the specific mechanisms for the development of potential therapeutic strategies for atherosclerosis.
Biqing Wang, Xuening Tang, Liu Yao, Yuxin Wang, Zhipeng Chen, Mengqi Li, Naishi Wu, Dawei Wu, Xiangchen Dai, Hongfeng Jiang, Ding Ai
Virus-specific CD8+ T cells play a central role in HIV-1 natural controllers to maintain suppressed viremia in the absence of antiretroviral therapy. These cells display a memory program that confers them stemness properties, high survival, polyfunctionality, proliferative capacity, metabolic plasticity, and antiviral potential. The development and maintenance of such qualities by memory CD8+ T cells appear crucial to achieving natural HIV-1 control. Here we show that targeting the signaling pathways Wnt/TCF-1 and mTORC through GSK3 inhibition to reprogram HIV-specific CD8+ T cells from non-controllers promoted functional capacities associated with natural control of infection. Features of such reprogrammed cells included the enrichment in TCF-1+ less-differentiated subsets, superior response to antigen, enhanced survival, polyfunctionality, metabolic plasticity, less mTORC1-dependency, improved response to γ-chain cytokines and stronger HIV suppressive capacity. Thus, such CD8+ T cell reprogramming, combined with other available immunomodulators, might represent a promising strategy for adoptive cell therapy in the search for an HIV-1 cure.
Federico Perdomo-Celis, Caroline Passaes, Valérie Monceaux, Stevenn Volant, Faroudy Boufassa, Pierre de Truchis, Morgane Marcou, Katia Bourdic, Laurence Weiss, Corinne Jung, Christine Bourgeois, Cécile Goujard, Laurence Meyer, Michaela Müller-Trutwin, Olivier Lambotte, Asier Sáez-Cirión
Macrophages constitute a major immune component in tumor tissues, but how these cells adapt to and survive in the nutrient-depleted and lactic acid–induced acidic tumor microenvironments is not yet fully understood. Here, we found that levels of carbonic anhydrase XII (CA12) expression were significantly and selectively upregulated on macrophages in human hepatocellular carcinoma (HCC). Transient glycolytic activation of peritumoral monocytes induced sustained expression of CA12 on tumor-infiltrating macrophages via autocrine cytokines and HIF1α pathways. On the one hand, CA12 mediated the survival of macrophages in relatively acidic tumor microenvironments, while on the other hand, it induced macrophage production of large amounts of C-C motif chemokine ligand 8 (CCL8), which enhanced cancer cell epithelial-mesenchymal transition (EMT) and facilitated tumor metastasis. Consistently, the accumulation of CA12+ macrophages in tumor tissues was associated with increased tumor metastatic potential and reduced survival of patients with HCC. Selective targeting of tumor-infiltrating macrophages with a CA12 inhibitor reduced tumor growth in mice and was sufficient to synergistically enhance the therapeutic efficacy of immune-checkpoint blockade. We suggest that CA12 activity is a previously unappreciated mechanism regulating the accumulation and functions of macrophages in tumor microenvironments and therefore represents a selective vulnerability that could be exploited in future designs for antitumor immunotherapeutic strategies.
Wan-Ru Ning, Da Jiang, Xing-Chen Liu, Yu-Fan Huang, Zhi-Peng Peng, Ze-Zhou Jiang, Tiebang Kang, Shi-Mei Zhuang, Yan Wu, Limin Zheng
The synthesis of serine from glucose is a key metabolic pathway supporting cellular proliferation in healthy and malignant cells. Despite this, the role that this aspect of metabolism plays in germinal center biology and pathology is not known. Here, we performed a comprehensive characterization of the role of the serine synthesis pathway in germinal center B cells and lymphomas derived from these cells. We demonstrated that upregulation of a functional serine synthesis pathway is a metabolic hallmark of B-cell activation and the germinal center reaction. Inhibition of phosphoglycerate dehydrogenase (PHGDH), the first and rate limiting enzyme in this pathway, led to defective germinal formation and impaired high-affinity antibody production. In addition, overexpression of enzymes involved in serine synthesis was a characteristic of germinal center B-cell derived lymphomas, with high levels of expression being predictive of reduced overall survival in diffuse large B cell lymphoma. Inhibition of PHGDH induced apoptosis in lymphoma cells reducing disease progression. These findings establish PHGDH as a critical player in humoral immunity and a clinically relevant target in lymphoma.
Annalisa D'Avola, Nathalie Legrave, Mylène Tajan, Probir Chakravarty, Ryan L. Shearer, Hamish W. King, Katarina Kluckova, Eric C. Cheung, Andrew J. Clear, Arief S. Gunawan, Lingling Zhang, Louisa K. James, James I. MacRae, John G. Gribben, Dinis P. Calado, Karen H. Vousden, John C. Riches
T cell immunoglobulin mucin domain-containing protein 3 (Tim-3) negatively regulates innate and adaptive immunity in cancer. To identify the mechanisms of Tim-3 in cancer immunity, we evaluated the effects of Tim-3 blockade in human and mouse melanoma. Here, we show that human PD-1+Tim-3+ CD8+ tumor-infiltrating lymphocytes (TILs) upregulate phosphatidylserine (PS), a receptor for Tim-3, and acquire cell surface myeloid markers from antigen presenting cells (APCs) through transfer of membrane fragments called trogocytosis. Tim-3 blockade acted on Tim-3+ APCs in a PS-dependent fashion to disrupt the trogocytosis of activated tumor antigen-specific CD8+ T cells and PD-1+Tim-3+ CD8+ TILs isolated from melanoma patients. Tim-3 and PD-1 blockades cooperated to disrupt trogocytosis of CD8+ TILs in two melanoma mouse models, decreasing tumor burden and prolonging survival. Deleting Tim-3 in dendritic cells but not on CD8+ T cells impeded the trogocytosis of CD8+ TILs in vivo. Trogocytosed CD8+ T cells presented tumor peptide-major histocompatibility complexes and became the target of fratricide T cell killing, which was reversed by Tim-3 blockade. Our findings have uncovered a mechanism used by Tim-3 to limit antitumor immunity.
Ornella Pagliano, Robert M. Morrison, Joe-Marc Chauvin, Hridesh Banerjee, Diwakar Davar, Quanquan Ding, Tokiyoshi Tanegashima, Wentao Gao, Saranya Rani Chakka, Richelle DeBlasio, Ava Lowin, Kevin Kara, Mignane Ka, Bochra Zidi, Rada Amin, Itay Raphael, Shuowen Zhang, Simon C. Watkins, Cindy Sander, John M. Kirkwood, Marcus Bosenberg, Ana C. Anderson, Vijay K. Kuchroo, Lawrence P. Kane, Alan J. Korman, Arvind Rajpal, Sean M. West, Minhua Han, Christine Bee, Xiaodi Deng, Xiao Min Schebye, Pavel Strop, Hassane M. Zarour
Host defense and inflammation are regulated by the NF-κB essential modulator (NEMO), a scaffolding protein with a broad immune cell and tissue expression profile. Hypomorphic mutations in inhibitor of NF-κB kinase regulatory subunit gamma (IKBKG) encoding NEMO typically present with immunodeficiency. Here, we characterized a pediatric autoinflammatory syndrome in 3 unrelated male patients with distinct X-linked IKBKG germline mutations that led to overexpression of a NEMO protein isoform lacking the domain encoded by exon 5 (NEMO-Δex5). This isoform failed to associate with TANK binding kinase 1 (TBK1), and dermal fibroblasts from affected patients activated NF-κB in response to TNF but not TLR3 or RIG-I–like receptor (RLR) stimulation when isoform levels were high. By contrast, T cells, monocytes, and macrophages that expressed NEMO-Δex5 exhibited increased NF-κB activation and IFN production, and blood cells from these patients expressed a strong IFN and NF-κB transcriptional signature. Immune cells and TNF-stimulated dermal fibroblasts upregulated the inducible IKK protein (IKKi) that was stabilized by NEMO-Δex5, promoting type I IFN induction and antiviral responses. These data revealed how IKBKG mutations that lead to alternative splicing of skipping exon 5 cause a clinical phenotype we have named NEMO deleted exon 5 autoinflammatory syndrome (NDAS), distinct from the immune deficiency syndrome resulting from loss-of-function IKBKG mutations.
Younglang Lee, Alex W. Wessel, Jiazhi Xu, Julia G. Reinke, Eries Lee, Somin M. Kim, Amy P. Hsu, Jevgenia Zilberman-Rudenko, Sha Cao, Clinton Enos, Stephen R. Brooks, Zuoming Deng, Bin Lin, Adriana A. de Jesus, Daniel N. Hupalo, Daniela G.P. Piotto, Maria T. Terreri, Victoria R. Dimitriades, Clifton L. Dalgard, Steven M. Holland, Raphaela Goldbach-Mansky, Richard M. Siegel, Eric P. Hanson