Lymphatic vessels maintain tissue fluid homeostasis and modulate inflammation, yet their spatial organisation and molecular identity in the healthy human kidney, and how these change during chronic transplant rejection, remain poorly defined. Here, we show that lymphatic capillaries initiate adjacent to cortical kidney tubules and lack smooth muscle coverage. These vessels exhibit an organ-specific molecular signature, enriched for CCL14, DNASE1L3, and MDK, with limited expression of canonical immune-trafficking markers found in other organ lymphatics, such as LYVE1 and CXCL8. In allografts with chronic mixed rejection, lymphatics become disorganised and infiltrate the medulla, with their endothelial junctions remodelling from a button-like to a continuous, zipper-like architecture. Lymphatics in rejecting kidneys localise around and interconnect tertiary lymphoid structures at different maturation stages, with altered intra- and peri-lymphatic CD4⁺ T cell distribution. The infiltrating T cells express IFNγ, which upregulates co-inhibitory ligands in lymphatic endothelial cells, including PVR and LGALS9. Simultaneously, lymphatics acquire HLA class II expression and exhibit C4d deposition, consistent with alloantibody binding and complement activation. Together, these findings define the spatial and molecular features of human kidney lymphatics, revealing tolerogenic reprogramming, accompanied by structural perturbations, during chronic transplant rejection.
Daniyal J. Jafree, Benjamin J Stewart, Karen L. Price, Maria Kolatsi-Joannou, Camille Laroche, Barian Mohidin, Benjamin Davis, Hannah Mitchell, Lauren G. Russell, Lucía Marinas del Rey, Chun Jing Wang, William J. Mason, Byung Il Lee, Lauren Heptinstall, Ayshwarya Subramanian, Gideon Pomeranz, Dale Moulding, Laura Wilson, Tahmina Wickenden, Saif N. Malik, Natalie Holroyd, Claire L. Walsh, Jennifer C. Chandler, Kevin X. Cao, Paul J.D. Winyard, Adrian S. Woolf, Marc Aurel Busche, Simon Walker-Samuel, Lucy S.K. Walker, Tessa Crompton, Peter J. Scambler, Reza Motallebzadeh, Menna R. Clatworthy, David A. Long
The outflow of 'dirty' brain fluids from the glymphatic system drains via the meningeal lymphatic vessels to the lymph nodes in the neck, primarily the deep cervical lymph nodes (dcLN). However, it is unclear whether dcLN drainage is essential for normal cerebral homeostasis. Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and computational fluid dynamics, we studied the impact of long-term mechanical stress from compromised dcLN drainage on brain solute and fluid outflow in anesthetized rats. We found that in young, but not middle-aged rats, impairment of dcLN drainage was linked to moderately increased intracranial pressure and the emergence of extracranial peri-venous drainage, with no evidence of hydrocephalus at any age. Surprisingly, both age groups showed enhanced brain solute clearance despite reduced glymphatic influx. CSF proteomic analysis revealed cellular stress in the form of low-grade inflammation, and up-regulation of pathways associated with neurodegeneration and blood brain barrier leakage in the rats with impaired lymphatic drainage. Our findings highlight that dcLN drainage is indeed a prerequisite for normal cerebral homeostasis in the rat and reveal the brain’s age-dependent compensatory responses to chronic impairment of its lymphatic drainage pathways.
Zachary H. Gursky, Zohaib Nisar Khan, Sunil Koundal, Ankita Bhardwaj, Joaquin Caceres Melgarejo, Kaiming Xu, Xinan Chen, Hung-Mo Lin, Xianfeng Gu, Hedok Lee, Jonathan Kipnis, Yoav Dori, Allen Tannenbaum, Laura Santambrogio, Helene Benveniste
Hypertonic and hyperosmolar stimuli frequently pose challenges to the intestinal tract. Therefore, a resilient epithelial barrier is essential for maintaining gut homeostasis in the presence of osmotic perturbations. NFAT5, an osmosensitive transcription factor, primarily maintains cellular homeostasis under hypertonic conditions. However, the osmoprotective role of NFAT5 in enterocyte homeostasis is poorly understood. Here, we demonstrate that NFAT5 is critical for the survival and proliferation of intestinal epithelial cells (IECs) and that its deficiency accelerates chemically induced or spontaneous colitis in mice. Mechanistically, NFAT5 promotes the survival of IECs and the renewal of intestinal stem cells, thereby regulating the production of mucus and antimicrobial compounds, including RegIII and lysozyme, which consequently shape the gut microbial composition to prevent colitis. Transcriptome analysis identifies HSP70 as a key downstream target of NFAT5 in epithelial regeneration. Loss- and gain-of-function experiments of HSP70 revealed that NFAT5 mitigates experimental colitis through IEC Hsp70, which protected stem cells from inflammation-induced injury and maintained barrier function. In conclusion, our study demonstrates a previously unknown role for NFAT5 in dictating the crosstalk between intestinal stem cells and the microbiota, underscoring the importance of the NFAT5–HSP70 axis in maintaining epithelial regeneration related to gut barrier function, balancing microbial composition, and subsequently preventing colitis progression.
Se Hyeon Park, Dae Hee Cheon, Yu-Mi Kim, Yeji Choi, Yong-Joon Cho, Bong-Ki Hong, Sang-Hyun Cho, Mi‑Na Kweon, Hyug Moo Kwon, Eugene B. Chang, Donghyun Kim, Wan-Uk Kim
The role of type 1 conventional dendritic cells (cDC1) in tolerance induction to solid organ allografts is unknown and important for strategies that seek to prolong allograft viability. Using a murine model deficient in cDC1s, we report cDC1s are required for donor antigen and costimulation blockade (DST + CoB) tolerance induction and survival of cardiac allografts. cDC1 deficiency led to decreases in CD4+CD25+FoxP3+ T cells within both allograft and spleen tissue of transplant recipients and this was found to be antigen specific. Donor antigen stimulation induced TGF-β1 expression both in vivo cDC1 and in vitro Flt3L derived cDC1. Genetic deletion of Tgfβ1 in cDC1s prevented induction of antigen specific CD4+CD25+FoxP3+ T cells and was associated with cardiac allograft rejection. In parallel, single-cell RNA sequencing and metabolic analysis revealed upregulation of cDC1 mitochondrial metabolic signatures after in vivo exposure to DST + CoB. Genetic inactivation of cDC1 mitochondrial metabolism reduced expression of cDC1 TGF-β1, decreased antigen specific T regulatory cell populations, and impaired allograft tolerance. Taken together, our findings newly implicate cDC1s in strategies to preserve solid organ allografts and also implicate mitochondrial metabolism of cDC1s as a molecular mechanism to enhance the generation of antigen-specific CD4+CD25+FoxP3+ T cells through TGF-β1.
Samantha L Schroth, Lei Zhang, Rebecca T.L. Jones, Kristofor Glinton, Nikita L. Mani, Hiroyasu Inui, Jesse T. Davidson, Samuel E. Weinberg, Navdeep Chandel, Maria-Luisa Alegre, Edward B. Thorp
Chronic inflammatory diseases, like rheumatoid arthritis (RA) have been described to cause central nervous system (CNS) activation. Less is known about environmental factors that enable the CNS to suppress peripheral inflammation in RA. Here, we identified gut microbiota-derived histamine as such factor. We show that low levels of histamine activate the enteric nervous system, increase inhibitory neurotransmitter concentrations in the spinal cord and restore homeostatic microglia, thereby reducing inflammation in the joints. Selective histamine 3 receptor (H3R) signaling in the intestine is critical for this effect, as systemic and intrathecal application did not show effects. Microglia depletion or pharmacological silencing of local nerve fibers impaired oral H3R agonist-induced pro-resolving effects on arthritis. Moreover, therapeutic supplementation of the short-chain fatty acid (SCFA) propionate identified one way to expand local intestinal histamine concentrations in mice and humans. Thus, we define a gut-CNS-joint axis pathway where microbiota-derived histamine initiates the resolution of arthritis via the CNS.
Kerstin Dürholz, Leona Ehnes, Mathias Linnerbauer, Eva Schmid, Heike Danzer, Michael Hinzpeter-Schmidt, Lena Lößlein, Lena Amend, Michael Frech, Vugar Azizov, Fabian Schälter, Arne Gessner, Sébastien Lucas, Till-Robin Lesker, R. Verena Taudte, Jörg Hofmann, Felix Beyer, Hadar Bootz-Maoz, Yasmin Reich, Hadar Romano, Daniele Mauro, Ruth Beckervordersandforth, Maja Skov Kragsnaes, Torkell Ellingsen, Wei Xiang, Aiden Haghikia, Cezmi A. Akdis, Francesco Ciccia, Tobias Bäuerle, Kerstin Sarter, Till Strowig, Nissan Yissachar, Georg Schett, Veit Rothhammer, Mario M. Zaiss
Downregulation of antigen presentation and lack of immune infiltration are defining features of small cell lung cancer (SCLC) limiting response to immune checkpoint blockade (ICB). While a high MHC Class I, immune-inflamed subset benefits from ICB, underlying mechanisms of immune response in SCLC have yet to be elucidated. Here we show that in the landmark IMpower133 clinical trial high, but not low, NOTCH1 expression is significantly associated with longer survival with the addition of ICB to chemotherapy among ~80% of SCLC patients with neuroendocrine-enriched tumors (ASCL1-enriched, HR 0.39, P = 0.0012; NEUROD1-enriched, HR 0.44, P = 0.024). Overexpression or pharmacologic activation of NOTCH1 in ASCL1 and NEUROD1 SCLC cell lines dramatically upregulates MHC Class I through epigenetic reactivation of STING. In syngeneic mouse models, Notch1 activation reprograms SCLC tumors from immune-excluded to immune-inflamed, facilitating durable, complete responses with ICB combined with a STING agonist. STING1 expression is significantly enriched in high compared to low NOTCH1 expressing tumors in IMpower133 thereby validating our proposed mechanism. Our data reveal a previously undiscovered role for NOTCH1 as a critical driver of SCLC immunogenicity and a potential predictive biomarker for ICB in SCLC. NOTCH1 activation may be a therapeutic strategy to unleash anti-tumor immune responses in SCLC and other neuroendocrine cancers in which NOTCH1 is typically suppressed.
Yoo Sun Kim, Barzin Y. Nabet, Briana N. Cortez, Nai-Yun Sun, Robin Sebastian, Christophe E. Redon, Anagh Ray, Liang Liu, Afeez A. Ishola, Sarah Loew, Anjali Dhall, Sivasish Sindiri, Velimir Gayevskiy, Min-Jung Lee, Shraddha Rastogi, Nahoko Sato, Noemi Kedei, Thorkell Andresson, Sudipto Das, Suresh Kumar, Alan E. Bers, Hongliang Zhang, Alberto Chiappori, Priyanka Gopal, Mohamed E. Abazeed, Haobin Chen, Mirit I. Aladjem, Yves Pommier, Moises J. Velez, David S. Shames, Nitin Roper
Group 2 innate lymphoid cells (ILC2s) play a crucial role in inducing type 2 inflammation in the lungs in response to allergens. Our study investigated the regulatory mechanism of IL-10 production by ILC2s and its impact on airway hyperreactivity (AHR), focusing on the role of ICOS. We found that inhibiting ICOS in pulmonary ILC2s significantly enhances IL-10 production. The absence of ICOS reprograms ILC2 steroid metabolism, leading to increased cholesterol and cortisol biosynthesis, and subsequent Glucocorticoid receptor (GR) activation. This reprogramming regulates MAF and NFIL3 activation, promoting IL-10 production. Notably, in vivo GR inhibition or ILC2-specific GR deficiency exacerbated AHR development in multiple mouse models. We extended these findings to human ILC2s, demonstrating concordant results between murine models and human cells. Our results indicate that ICOS negatively regulates IL-10 production in ILC2s by controlling cholesterol and cortisol biosynthesis. This mechanism provides new insights into the complex interplay between ILC2s, ICOS, and glucocorticoid signaling in the context of allergic airway inflammation.
Yoshihiro Sakano, Kei Sakano, Benjamin P. Hurrell, Mohammad H. Kazemi, Xin Li, Stephen Shen, Omid Akbari
Perianal fistulizing Crohn’s disease (PCD) is a common and debilitating complication with elusive pathophysiology. To define actionable immunologic targets in PCD, we recruited patients with PCD (n = 24), CD without perianal disease (NPCD, n = 10), and idiopathic/cryptoglandular perianal fistulas (IPF, n = 29). Biopsies from fistula tracts, fistula opening, and rectal mucosa were analyzed using single-cell RNA-sequencing (scRNA-seq), mass cytometry (CyTOF), and spatial transcriptomics (ST). Global hyperactivation of IFN-g pathways distinguished PCD from idiopathic perianal fistulas and CD without perianal disease in the fistula tracts and/or intestinal mucosa. IFN-g and TNF-a signaling directly induced genes involved in epithelial-to-mesenchymal transition in PCD rectal epithelial cells. Enhanced IFN-g signaling in PCD was driven by pathogenic Th17 (pTh17) cells, which were recruited and activated by myeloid cells overexpressing LPS signature (LPS_myeloid). pTh17 and LPS_myeloid cells co-localized adjacent to PCD fistula tracts on ST and drove local IFN-g signaling. Anti-TNFs facilitated fistula healing by downregulating T and myeloid cell signatures, while promoting mucosal barrier repair and immunoregulatory processes. Key single-cell findings were validated by bulk RNA-seq data of an independent CD cohort. To summarize, we identified IFN-g-driven mechanisms contributing to pathogenesis and highlighted its blockade as a therapeutic strategy for PCD.
Siyan Cao, Khai M. Nguyen, Kaiming Ma, Tingyi Tan, Xin Yao, Ta-Chiang Liu, Malek Ayoub, Jalpa Devi, Sami Samaan, Yizhou Liu, Radhika Smith, Matthew L. Silviera, Steven R. Hunt, Paul E. Wise, Matthew G. Mutch, Sean C. Glasgow, William C. Chapman Jr, Michelle L. Cowan, Mathew A. Ciorba, Marco Colonna, Parakkal Deepak
Gain of plasticity and loss of MHC-II enable tumor cells to evade immune surveillance contributing to tumor development. Here, we showed that the transcriptional corepressor RCOR2 is a key factor that integrates two epigenetic programs surveilling tumor plasticity and immunogenicity. RCOR2 was upregulated predominantly in tumor cells and promoted tumor development in mice through reducing tumor cell death by CD4+/CD8+ T cells and inducing cancer stemness. Mechanistically, RCOR2 repressed RNF43 expression through LSD1-mediated demethylation of histone H3 at lysine 4 to induce activation of Wnt/β-catenin and tumor stemness. Simultaneously, RCOR2 inhibited CIITA expression through HDAC1/2-mediated deacetylation of histone H4 at lysine 16, leading to MHC-II silencing in tumor cells and subsequent impairment of CD4+/CD8+ T cell immunosurveillance, thereby promoting immune evasion. RCOR2 loss potentiated anti-PD-1 therapy in mouse models of cancer and correlated with better response to anti-PD-1 therapy in human patients. Collectively, these findings uncover a “two birds with one stone” effect for RCOR2, highlighting its potential as a valuable target for improved cancer therapy.
Lei Bao, Ming Zhu, Maowu Luo, Ashwani Kumar, Yan Peng, Chao Xing, Yingfei Wang, Weibo Luo
Bloodstream bacterial infections cause one-third of deaths from bacterial infections, and eradication of circulating bacteria is essential to prevent disseminated infections. We here found that hepcidin, the master regulator of systemic iron homeostasis, affected Kupffer cell (KC) immune defense against bloodstream bacterial infections by modulating the gut commensal bacteria-derived tryptophan derivative indole-3-propionic acid (IPA). Hepcidin deficiency impaired bacterial capture by KCs and exacerbated systemic bacterial dissemination through morphological changes in KCs. Gut microbiota depletion and fecal microbiota transplantation revealed that the gut microbiota mediated the alteration of KCs volume. Mechanistically, hepcidin deficiency led to a decreased abundance of the IPA-producing commensal Lactobacillus intestinalis and a concomitant reduction in the gut-to-liver shuttling of its metabolite IPA. IPA supplementation or Lactobacillus intestinalis colonization restored the KC volume and hepatic immune defense against bloodstream bacterial infection in hepcidin-deficient mice. Moreover, hepcidin levels in patients with bacteremia were associated with days of antibiotic usage and hospitalization. Collectively, our findings described a previously unappreciated role of hepcidin in sustaining KC-mediated hepatic defense against bloodstream bacterial infections through the gut commensal Lactobacillus intestinalis and its tryptophan derivative IPA. More importantly, restoring the crosstalk between the gut microbiota and liver through IPA-inspired therapies may offer a promising strategy for enhancing the host defense against bloodstream bacterial infections in those with low hepcidin levels and a high risk for bacterial infections.
Yihang Pan, Lihua Shen, Zehua Wu, Xueke Wang, Xiwang Liu, Yan Zhang, Qinyu Luo, Sijin Liu, Xiangming Fang, Qiang Shu, Qixing Chen