Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Tumor Microenvironment (Mar 2021)
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Dermatology

  • 87 Articles
  • 1 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 8
  • 9
  • Next →
Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice
Zhuzhen Zhang, … , Rana K. Gupta, Philipp E. Scherer
Zhuzhen Zhang, … , Rana K. Gupta, Philipp E. Scherer
Published September 10, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI130239.
View: Text | PDF

Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice

  • Text
  • PDF
Abstract

Dermal adipose tissue (dWAT) has been the focus of much discussion in recent years. However, dWAT remains poorly characterized. The fate of the mature dermal adipocytes and the origin of the rapidly re-appearing dermal adipocytes at different stages remain unclear. Here, we isolated dermal adipocytes and characterized dermal fat at the cellular and molecular level. Together with its dynamic responses to external stimuli, we established that dermal adipocytes are a distinct class of white adipocytes with high plasticity. By combining pulse-chase lineage tracing and single cell RNA-sequencing, we observed that mature dermal adipocytes undergo de-differentiation and re-differentiation under physiological and pathophysiological conditions. Upon various challenges, the de-differentiated cells proliferate and re-differentiate into adipocytes. In addition, manipulation of dWAT highlighted an important role for mature dermal adipocytes for hair cycling and wound healing. Altogether, these observations unravel a surprising plasticity of dermal adipocytes and provide an explanation for the dynamic changes in dWAT mass that occur under physiological and pathophysiological conditions, and highlight the important contributions of dWAT towards maintaining skin homeostasis.

Authors

Zhuzhen Zhang, Mengle Shao, Chelsea Hepler, Zhenzhen Zi, Shangang Zhao, Yu A. An, Yi Zhu, Alexandra Ghaben, May-yun Wang, Na Li, Toshiharu Onodera, Nolwenn Joffin, Clair Crewe, Qingzhang Zhu, Lavanya Vishvanath, Ashwani Kumar, Chao Xing, Qiong A. Wang, Laurent Gautron, Yingfeng Deng, Ruth Gordillo, Ilja Kruglikov, Christine M. Kusminski, Rana K. Gupta, Philipp E. Scherer

×

Recurrent YAP1-MAML2 and YAP1-NUTM1 fusions in poroma and porocarcinoma
Shigeki Sekine, … , Naoya Yamazaki, Taisuke Mori
Shigeki Sekine, … , Naoya Yamazaki, Taisuke Mori
Published May 30, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI126185.
View: Text | PDF

Recurrent YAP1-MAML2 and YAP1-NUTM1 fusions in poroma and porocarcinoma

  • Text
  • PDF
Abstract

Poroma is a benign skin tumor exhibiting terminal sweat gland duct differentiation. The present study aimed to explore the potential role of gene fusions in the tumorigenesis of poromas. RNA sequencing and reverse transcription PCR identified highly recurrent YAP1-MAML2 and YAP1-NUTM1 fusions in poromas (92/104 lesions, 88.5%) and their rare malignant counterpart, porocarcinomas (7/11 lesions, 63.6%). A WWTR1-NUTM1 fusion was identified in a single lesion of poroma. Fluorescent in-situ hybridization confirmed genomic rearrangements involving these genetic loci. Immunohistochemical staining could readily identify the YAP1 fusion products as nuclear expression of the N-terminal portion of YAP1 with a lack of the C-terminal portion. YAP1 and WWTR1, also known as YAP and TAZ, respectively, encode paralogous transcriptional activators of TEAD, which are negatively regulated by the Hippo signaling pathway. The YAP1 and WWTR1 fusions strongly transactivated a TEAD reporter and promoted anchorage-independent growth, confirming their tumorigenic roles. Our results demonstrate the frequent presence of transforming YAP1 fusions in poromas and porocarcinomas and suggest YAP1/TEAD-dependent transcription as a candidate therapeutic target against porocarcinoma.

Authors

Shigeki Sekine, Tohru Kiyono, Eijitsu Ryo, Reiko Ogawa, Susumu Wakai, Hitoshi Ichikawa, Koyu Suzuki, Satoru Arai, Koji Tsuta, Mitsuaki Ishida, Yuko Sasajima, Naoki Goshima, Naoya Yamazaki, Taisuke Mori

×

SMAD signaling promotes melanoma metastasis independently of phenotype switching
Eylul Tuncer, … , Reinhard Dummer, Lukas Sommer
Eylul Tuncer, … , Reinhard Dummer, Lukas Sommer
Published April 30, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI94295.
View: Text | PDF

SMAD signaling promotes melanoma metastasis independently of phenotype switching

  • Text
  • PDF
Abstract

The development of metastatic melanoma is thought to require the dynamic shifting of neoplastic cells between proliferative and invasive phenotypes. Contrary to this conventional “phenotype switching” model, we now show that disease progression can involve malignant melanoma cells simultaneously displaying proliferative and invasive properties. Using a genetic mouse model of melanoma in combination with in vitro analyses of melanoma cell lines, we found that conditional deletion of the downstream signaling molecule Smad4, which abrogates all canonical TGF-β signaling, indeed inhibits both tumor growth and metastasis. Conditional deletion of the inhibitory signaling factor Smad7, however, generated cells that are both highly invasive and proliferative, indicating that invasiveness is compatible with a high proliferation rate. In fact, conditional Smad7 deletion led to sustained melanoma growth and at the same time promoted massive metastasis formation, a result consistent with data indicating that low SMAD7 levels in patient tumors are associated with a poor survival. Our findings reveal that modulation of SMAD7 levels can overcome the need for phenotype switching during tumor progression and may thus represent a novel therapeutic target in metastatic disease.

Authors

Eylul Tuncer, Raquel R. Calçada, Daniel Zingg, Sandra Varum, Phil Cheng, Sandra N. Freiberger, Chu-Xia Deng, Ingo Kleiter, Mitchell P. Levesque, Reinhard Dummer, Lukas Sommer

×

Androgen receptor functions as transcriptional repressor of cancer-associated fibroblast activation
Andrea Clocchiatti, … , Berna C. Özdemir, G. Paolo Dotto
Andrea Clocchiatti, … , Berna C. Özdemir, G. Paolo Dotto
Published November 5, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI99159.
View: Text | PDF

Androgen receptor functions as transcriptional repressor of cancer-associated fibroblast activation

  • Text
  • PDF
Abstract

The aging-associated increase of cancer risk is linked with stromal fibroblast senescence and concomitant cancer-associated fibroblast (CAF) activation. Surprisingly little is known about the role of androgen receptor (AR) signaling in this context. We have found downmodulated AR expression in dermal fibroblasts underlying premalignant skin cancer lesions (actinic keratoses and dysplastic nevi) as well as in CAFs from the 3 major skin cancer types, squamous cell carcinomas (SCCs), basal cell carcinomas, and melanomas. Functionally, decreased AR expression in primary human dermal fibroblasts (HDFs) from multiple individuals induced early steps of CAF activation, and in an orthotopic skin cancer model, AR loss in HDFs enhanced tumorigenicity of SCC and melanoma cells. Forming a complex, AR converged with CSL/RBP-Jκ in transcriptional repression of key CAF effector genes. AR and CSL were positive determinants of each other’s expression, with BET inhibitors, which counteract the effects of decreased CSL, restoring AR expression and activity in CAFs. Increased AR expression in these cells overcame the consequences of CSL loss and was by itself sufficient to block the growth and tumor-enhancing effects of CAFs on neighboring cancer cells. As such, the findings establish AR as a target for stroma-focused cancer chemoprevention and treatment.

Authors

Andrea Clocchiatti, Soumitra Ghosh, Maria-Giuseppina Procopio, Luigi Mazzeo, Pino Bordignon, Paola Ostano, Sandro Goruppi, Giulia Bottoni, Atul Katarkar, Mitchell Levesque, Peter Kölblinger, Reinhard Dummer, Victor Neel, Berna C. Özdemir, G. Paolo Dotto

×

Fas ligand promotes an inducible TLR-dependent model of cutaneous lupus–like inflammation
Purvi Mande, … , John E. Harris, Ann Marshak-Rothstein
Purvi Mande, … , John E. Harris, Ann Marshak-Rothstein
Published June 11, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI98219.
View: Text | PDF

Fas ligand promotes an inducible TLR-dependent model of cutaneous lupus–like inflammation

  • Text
  • PDF
Abstract

Toll-like receptors TLR7 and TLR9 are both implicated in the activation of autoreactive B cells and other cell types associated with systemic lupus erythematosus (SLE) pathogenesis. However, Tlr9–/– autoimmune-prone strains paradoxically develop more severe disease. We have now leveraged the negative regulatory role of TLR9 to develop an inducible rapid-onset murine model of systemic autoimmunity that depends on T cell detection of a membrane-bound OVA fusion protein expressed by MHC class II+ cells, expression of TLR7, expression of the type I IFN receptor, and loss of expression of TLR9. These mice are distinguished by a high frequency of OVA-specific Tbet+, IFN-γ+, and FasL-expressing Th1 cells as well as autoantibody-producing B cells. Unexpectedly, contrary to what occurs in most models of SLE, they also developed skin lesions that are very similar to those of human cutaneous lupus erythematosus (CLE) as far as clinical appearance, histological changes, and gene expression. FasL was a key effector mechanism in the skin, as the transfer of FasL-deficient DO11gld T cells completely failed to elicit overt skin lesions. FasL was also upregulated in human CLE biopsies. Overall, our model provides a relevant system for exploring the pathophysiology of CLE as well as the negative regulatory role of TLR9.

Authors

Purvi Mande, Bahar Zirak, Wei-Che Ko, Keyon Taravati, Karen L. Bride, Tia Y. Brodeur, April Deng, Karen Dresser, Zhaozhao Jiang, Rachel Ettinger, Katherine A. Fitzgerald, Michael D. Rosenblum, John E. Harris, Ann Marshak-Rothstein

×

MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation
Ruifang Wu, … , Ming Zhao, Qianjin Lu
Ruifang Wu, … , Ming Zhao, Qianjin Lu
Published May 14, 2018
Citation Information: J Clin Invest. 2018. https://doi.org/10.1172/JCI97426.
View: Text | PDF

MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation

  • Text
  • PDF
Abstract

Immune imbalance of T lymphocyte subsets is a hallmark of psoriasis, but the molecular mechanisms underlying this aspect of psoriasis pathology are poorly understood. Here, we report that microRNA-210 (miR-210), a miR that is highly expressed in both psoriasis patients and mouse models, induces helper T (Th) 17 and Th1 cell differentiation but inhibits Th2 differentiation through repressing STAT6 and LYN expression, contributing to several aspects of the immune imbalance in psoriasis. Both miR-210 ablation in mice and inhibition of miR-210 by intradermal injection of antagomir-210 blocked the immune imbalance and the development of psoriasis-like inflammation in an imiquimod-induced or IL-23–induced psoriasis-like mouse model. We further showed that TGF-β and IL-23 enhance miR-210 expression by inducing HIF-1α, which recruits P300 and promotes histone H3 acetylation in the miR-210 promoter region. Our results reveal a crucial role for miR-210 in the immune imbalance of T lymphocyte subsets in psoriasis and suggest a potential therapeutic avenue.

Authors

Ruifang Wu, Jinrong Zeng, Jin Yuan, Xinjie Deng, Yi Huang, Lina Chen, Peng Zhang, Huan Feng, Zixin Liu, Zijun Wang, Xiaofei Gao, Haijing Wu, Honglin Wang, Yuwen Su, Ming Zhao, Qianjin Lu

×

Clinically resolved psoriatic lesions contain psoriasis-specific IL-17–producing αβ T cell clones
Tiago R. Matos, … , James G. Krueger, Rachael A. Clark
Tiago R. Matos, … , James G. Krueger, Rachael A. Clark
Published September 25, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI93396.
View: Text | PDF

Clinically resolved psoriatic lesions contain psoriasis-specific IL-17–producing αβ T cell clones

  • Text
  • PDF
Abstract

In psoriasis, an IL-17–mediated inflammatory skin disease, skin lesions resolve with therapy, but often recur in the same locations when therapy is discontinued. We propose that residual T cell populations in resolved psoriatic lesions represent the pathogenic T cells of origin in this disease. Utilizing high-throughput screening (HTS) of the T cell receptor (TCR) and immunostaining, we found that clinically resolved psoriatic lesions contained oligoclonal populations of T cells that produced IL-17A in both resolved and active psoriatic lesions. Putative pathogenic clones preferentially utilized particular Vβ and Vα subfamilies. We identified 15 TCRβ and 4 TCRα antigen receptor sequences shared between psoriasis patients and not observed in healthy controls or other inflammatory skin conditions. To address the relative roles of αβ versus γδ T cells in psoriasis, we carried out TCR/δ HTS. These studies demonstrated that the majority of T cells in psoriasis and healthy skin are αβ T cells. γδ T cells made up 1% of T cells in active psoriasis, less than 1% in resolved psoriatic lesions, and less than 2% in healthy skin. All of the 70 most frequent putative pathogenic T cell clones were αβ T cells. In summary, IL-17–producing αβ T cell clones with psoriasis-specific antigen receptors exist in clinically resolved psoriatic skin lesions. These cells likely represent the disease-initiating pathogenic T cells in psoriasis, suggesting that lasting control of this disease will require suppression of these resident T cell populations.

Authors

Tiago R. Matos, John T. O’Malley, Elizabeth L. Lowry, David Hamm, Ilan R. Kirsch, Harlan S. Robins, Thomas S. Kupper, James G. Krueger, Rachael A. Clark

×

Gentamicin induces functional type VII collagen in recessive dystrophic epidermolysis bullosa patients
David T. Woodley, … , Douglas Keene, Mei Chen
David T. Woodley, … , Douglas Keene, Mei Chen
Published July 10, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI92707.
View: Text | PDF

Gentamicin induces functional type VII collagen in recessive dystrophic epidermolysis bullosa patients

  • Text
  • PDF
Abstract

BACKGROUND. Recessive dystrophic epidermolysis bullosa (RDEB) is an incurable disease caused by mutations in the gene encoding type VII collagen, the major component of anchoring fibrils (AF). We previously demonstrated that gentamicin produced functional type VII collagen in RDEB cells harboring nonsense mutations. Herein, we determined whether topical or intradermal gentamicin administration induces type VII collagen and AFs in RDEB patients. METHODS. A double-blind, placebo-controlled pilot trial assessed safety and efficacy of topical and intradermal gentamicin in 5 RDEB patients with nonsense mutations. The topical arm tested 0.1% gentamicin ointment or placebo application 3 times daily at 2 open erosion sites for 2 weeks. The intradermal arm tested daily intradermal injection of gentamicin solution (8 mg) or placebo into 2 intact skin sites for 2 days in 4 of 5 patients. Primary outcomes were induction of type VII collagen and AFs at the test sites and safety assessment. A secondary outcome assessed wound closure of topically treated erosions. RESULTS. Both topical and intradermal gentamicin administration induced type VII collagen and AFs at the dermal-epidermal junction of treatment sites. Newly created type VII collagen varied from 20% to 165% of that expressed in normal human skin and persisted for 3 months. Topical gentamicin corrected dermal-epidermal separation, improved wound closure, and reduced blister formation. There were no untoward side effects from gentamicin treatments. Type VII collagen induction did not generate anti–type VII collagen autoantibodies in patients’ blood or skin. CONCLUSION. Topical and intradermal gentamicin suppresses nonsense mutations and induces type VII collagen and AFs in RDEB patients. Gentamicin therapy may provide a readily available treatment for RDEB patients with nonsense mutations. TRIAL REGISTRATION. ClinicalTrials.gov NCT02698735. FUNDING. Epidermolysis Bullosa Research Partnership, Epidermolysis Bullosa Medical Research Foundation, NIH, and VA Merit Award.

Authors

David T. Woodley, Jon Cogan, Yingping Hou, Chao Lyu, M. Peter Marinkovich, Douglas Keene, Mei Chen

×

Mutations in γ-secretase subunit–encoding PSENEN underlie Dowling-Degos disease associated with acne inversa
Damian J. Ralser, … , Benjamin Odermatt, Regina C. Betz
Damian J. Ralser, … , Benjamin Odermatt, Regina C. Betz
Published March 13, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI90667.
View: Text | PDF

Mutations in γ-secretase subunit–encoding PSENEN underlie Dowling-Degos disease associated with acne inversa

  • Text
  • PDF
Abstract

Dowling-Degos disease (DDD) is an autosomal-dominant disorder of skin pigmentation associated with mutations in keratin 5 (KRT5), protein O-fucosyltransferase 1 (POFUT1), or protein O-glucosyltransferase 1 (POGLUT1). Here, we have identified 6 heterozygous truncating mutations in PSENEN, encoding presenilin enhancer protein 2, in 6 unrelated patients and families with DDD in whom mutations in KRT5, POFUT1, and POGLUT1 have been excluded. Further examination revealed that the histopathologic feature of follicular hyperkeratosis distinguished these 6 patients from previously studied individuals with DDD. Knockdown of psenen in zebrafish larvae resulted in a phenotype with scattered pigmentation that mimicked human DDD. In the developing zebrafish larvae, in vivo monitoring of pigment cells suggested that disturbances in melanocyte migration and differentiation underlie the DDD pathogenesis associated with PSENEN. Six of the PSENEN mutation carriers presented with comorbid acne inversa (AI), an inflammatory hair follicle disorder, and had a history of nicotine abuse and/or obesity, which are known trigger factors for AI. Previously, PSENEN mutations were identified in familial AI, and comanifestation of DDD and AI has been reported for decades. The present work suggests that PSENEN mutations can indeed cause a comanifestation of DDD and AI that is likely triggered by predisposing factors for AI. Thus, the present report describes a DDD subphenotype in PSENEN mutation carriers that is associated with increased susceptibility to AI.

Authors

Damian J. Ralser, F. Buket Ü. Basmanav, Aylar Tafazzoli, Jade Wititsuwannakul, Sarah Delker, Sumita Danda, Holger Thiele, Sabrina Wolf, Michélle Busch, Susanne A. Pulimood, Janine Altmüller, Peter Nürnberg, Didier Lacombe, Uwe Hillen, Jörg Wenzel, Jorge Frank, Benjamin Odermatt, Regina C. Betz

×

Tuberous sclerosis complex inactivation disrupts melanogenesis via mTORC1 activation
Juxiang Cao, … , Hans R. Widlund, David J. Kwiatkowski
Juxiang Cao, … , Hans R. Widlund, David J. Kwiatkowski
Published December 5, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI84262.
View: Text | PDF

Tuberous sclerosis complex inactivation disrupts melanogenesis via mTORC1 activation

  • Text
  • PDF
Abstract

Tuberous sclerosis complex (TSC) is an autosomal dominant tumor-suppressor gene syndrome caused by inactivating mutations in either TSC1 or TSC2, and the TSC protein complex is an essential regulator of mTOR complex 1 (mTORC1). Patients with TSC develop hypomelanotic macules (white spots), but the molecular mechanisms underlying their formation are not fully characterized. Using human primary melanocytes and a highly pigmented melanoma cell line, we demonstrate that reduced expression of either TSC1 or TSC2 causes reduced pigmentation through mTORC1 activation, which results in hyperactivation of glycogen synthase kinase 3β (GSK3β), followed by phosphorylation of and loss of β-catenin from the nucleus, thereby reducing expression of microphthalmia-associated transcription factor (MITF), and subsequent reductions in tyrosinase and other genes required for melanogenesis. Genetic suppression or pharmacological inhibition of this signaling cascade at multiple levels restored pigmentation. Importantly, primary melanocytes isolated from hypomelanotic macules from 6 patients with TSC all exhibited reduced TSC2 protein expression, and 1 culture showed biallelic mutation in TSC2, one of which was germline and the second acquired in the melanocytes of the hypomelanotic macule. These findings indicate that the TSC/mTORC1/AKT/GSK3β/β-catenin/MITF axis plays a central role in regulating melanogenesis. Interventions that enhance or diminish mTORC1 activity or other nodes in this pathway in melanocytes could potentially modulate pigment production.

Authors

Juxiang Cao, Magdalena E. Tyburczy, Joel Moss, Thomas N. Darling, Hans R. Widlund, David J. Kwiatkowski

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 8
  • 9
  • Next →
The “skin”ny on epidermal RAC1 in psoriasis pathogenesis
Mårten C.G. Winge and colleagues characterize the role of RAC1 in the autoimmune disorder, psoriasis…
Published June 13, 2016
Scientific Show StopperDermatology
Advertisement

Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts