Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact

Dermatology

  • 86 Articles
  • 1 Posts
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 8
  • 9
  • Next →
Human skin is colonized by T cells that recognize CD1a independently of lipid
Rachel N. Cotton, … , Rachael A. Clark, D. Branch Moody
Rachel N. Cotton, … , Rachael A. Clark, D. Branch Moody
Published January 4, 2021
Citation Information: J Clin Invest. 2021;131(1):e140706. https://doi.org/10.1172/JCI140706.
View: Text | PDF

Human skin is colonized by T cells that recognize CD1a independently of lipid

  • Text
  • PDF
Abstract

CD1a-autoreactive T cells contribute to skin disease, but the identity of immunodominant self-lipid antigens and their mode of recognition are not yet solved. In most models, MHC and CD1 proteins serve as display platforms for smaller antigens. Here, we showed that CD1a tetramers without added antigen stained large T cell pools in every subject tested, accounting for approximately 1% of skin T cells. The mechanism of tetramer binding to T cells did not require any defined antigen. Binding occurred with approximately 100 lipid ligands carried by CD1a proteins, but could be tuned upward or downward with certain natural self-lipids. TCR recognition mapped to the outer A′ roof of CD1a at sites remote from the antigen exit portal, explaining how TCRs can bind CD1a rather than carried lipids. Thus, a major antigenic target of CD1a T cell autoreactivity in vivo is CD1a itself. Based on their high frequency and prevalence among donors, we conclude that CD1a-specific, lipid-independent T cells are a normal component of the human skin T cell repertoire. Bypassing the need to select antigens and effector molecules, CD1a tetramers represent a simple method to track such CD1a-specific T cells from tissues and in any clinical disease.

Authors

Rachel N. Cotton, Tan-Yun Cheng, Marcin Wegrecki, Jérôme Le Nours, Dennis P. Orgill, Bohdan Pomahac, Simon G. Talbot, Richard A. Willis, John D. Altman, Annemieke de Jong, Graham Ogg, Ildiko Van Rhijn, Jamie Rossjohn, Rachael A. Clark, D. Branch Moody

×

Galectin‐7 downregulation in lesional keratinocytes contributes to enhanced IL‐17A signaling and skin pathology in psoriasis
Hung-Lin Chen, … , Daniel K. Hsu, Fu-Tong Liu
Hung-Lin Chen, … , Daniel K. Hsu, Fu-Tong Liu
Published October 15, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI130740.
View: Text | PDF

Galectin‐7 downregulation in lesional keratinocytes contributes to enhanced IL‐17A signaling and skin pathology in psoriasis

  • Text
  • PDF
Abstract

Psoriasis is a chronic inflammatory skin disease characterized by inflammatory cell infiltration, as well as hyperproliferation of keratinocytes in skin lesions, and is considered a metabolic syndrome. We found that the expression of galectin-7 is reduced in the skin lesions of patients with psoriasis. IL-17A and TNF-α, two cytokines intimately involved in the development of psoriatic lesions, suppressed galectin-7 expression in human primary keratinocytes (HEKn cells) and the immortalized human keratinocyte cell line HaCaT. A galectin-7 knockdown in these cells elevated the production of IL-6 and IL-8 and enhanced ERK signaling when the cells were stimulated with IL-17A. Galectin-7 attenuated IL-17A–induced production of inflammatory mediators by keratinocytes via the miR-146a–ERK pathway. Moreover, galectin-7–deficient mice showed enhanced epidermal hyperplasia and skin inflammation in response to intradermal IL-23 injection. We identified fluvastatin as an inducer of galectin-7 expression by connectivity map (cMAP) analysis, confirmed this effect in keratinocytes, and demonstrated that fluvastatin attenuated IL-6 and IL-8 production induced by IL-17A. Thus, we validate a role of galectin-7 in the pathogenesis of psoriasis, in both epidermal hyperplasia and keratinocyte-mediated inflammatory responses, and formulated a rationale for the use of statins in the treatment of psoriasis.

Authors

Hung-Lin Chen, Chia-Hui Lo, Chi-Chun Huang, Meng-Ping Lu, Po-Yuan Hu, Chang-Shan Chen, Di-Yen Chueh, Peilin Chen, Teng-Nan Lin, Yuan-Hsin Lo, Yu-Ping Hsiao, Daniel K. Hsu, Fu-Tong Liu

×

GLS1-mediated glutaminolysis unbridled by MALT1 protease promotes psoriasis pathogenesis
Xichun Xia, … , Zhinan Yin, Yunfei Gao
Xichun Xia, … , Zhinan Yin, Yunfei Gao
Published August 24, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI129269.
View: Text | PDF

GLS1-mediated glutaminolysis unbridled by MALT1 protease promotes psoriasis pathogenesis

  • Text
  • PDF
Abstract

Psoriasis is a severe disease associated with the disturbance of metabolism and inflammation, but the molecular mechanisms underlying these aspects of psoriasis pathology are poorly understood. Here, we report that glutaminase 1–mediated (GLS1-mediated) glutaminolysis was aberrantly activated in patients with psoriasis and in psoriasis-like mouse models, which promoted Th17 and γδ T17 (IL-17A–producing γδ T) cell differentiation through enhancement of histone H3 acetylation of the Il17a promoter, thereby contributing to the immune imbalance and development of psoriasis. We further demonstrate that mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) protease was constitutively active in psoriatic CD4+ and γδ T cells, thereby supporting GLS1 expression by stabilizing c-Jun, which directly binds to the GLS1 promoter region. Blocking the activity of either GLS1 or MALT1 protease resolved Th17 and γδ T17 cell differentiation and epidermal hyperplasia in the psoriasis-like mouse models. Finally, IL-17A enhanced GLS1 expression via the MALT1/cJun pathway in keratinocytes, resulting in hyperproliferation of and chemokine production by keratinocytes. Our findings identify the role of the MALT1/cJun/GLS1/glutaminolysis/H3 acetylation/T17 axis in psoriasis pathogenesis and reveal potential therapeutic targets for this disease.

Authors

Xichun Xia, Guangchao Cao, Guodong Sun, Leqing Zhu, Yixia Tian, Yueqi Song, Chengbin Guo, Xiao Wang, Jingxiang Zhong, Wei Zhou, Peng Li, Hua Zhang, Jianlei Hao, Zhizhong Li, Liehua Deng, Zhinan Yin, Yunfei Gao

×

The CDK4/6-EZH2 pathway is a potential therapeutic target for psoriasis
Anne Müller, … , Klaus Schulze-Osthoff, Daniela Kramer
Anne Müller, … , Klaus Schulze-Osthoff, Daniela Kramer
Published July 23, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI134217.
View: Text | PDF

The CDK4/6-EZH2 pathway is a potential therapeutic target for psoriasis

  • Text
  • PDF
Abstract

Psoriasis is a frequent inflammatory skin disease characterized by keratinocyte hyperproliferation and a disease-related infiltration of immune cells. Here, we identified a novel pro-inflammatory signaling pathway driven by the cyclin-dependent kinases (CDK) 4 and 6 and the methyltransferase EZH2 as a valid target for psoriasis therapy. Delineation of the pathway revealed that CDK4/6 phosphorylated EZH2 in keratinocytes, thereby triggering a methylation-induced activation of STAT3. Subsequently, active STAT3 resulted in the induction of IκBζ (IkappaBzeta), which is a key pro-inflammatory transcription factor required for cytokine synthesis in psoriasis. Pharmacological or genetic inhibition of CDK4/6 or EZH2 abrogated psoriasis-related pro-inflammatory gene expression by suppressing IκBζ induction in keratinocytes. Importantly, topical application of CDK4/6 or EZH2 inhibitors on the skin was sufficient to fully prevent the development of psoriasis in various mouse models by suppressing STAT3-mediated IκBζ expression. Moreover, we found a hyperactivation of the CDK4/6-EZH2 pathway in human and mouse psoriatic skin lesions. Thus, this study not only identifies a novel psoriasis-relevant pro-inflammatory pathway, but also proposes the repurposing of CDK4/6 or EZH2 inhibitors as a new therapeutic option for psoriasis patients.

Authors

Anne Müller, Antje Dickmanns, Claudia Resch, Knut Schäkel, Stephan Hailfinger, Matthias Dobbelstein, Klaus Schulze-Osthoff, Daniela Kramer

×

3D model of harlequin ichthyosis reveals inflammatory therapeutic targets
Florence Enjalbert, … , Anton J. Enright, Edel A. O'Toole
Florence Enjalbert, … , Anton J. Enright, Edel A. O'Toole
Published June 16, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI132987.
View: Text | PDF

3D model of harlequin ichthyosis reveals inflammatory therapeutic targets

  • Text
  • PDF
Abstract

The biology of harlequin ichthyosis (HI), a devastating skin disorder, caused by loss of function mutations in the gene ABCA12, is poorly understood and to date no satisfactory treatment has been developed. We sought to investigate pathomechanisms of HI which could lead to the identification of new treatments to improve patients’ quality of life. In this study, RNA-Seq and functional assays were performed to define the effects of loss of ABCA12, using HI patient skin samples and an engineered CRISPR-Cas9 ABCA12 KO cell line. The HI living skin equivalent (3D model) recapitulated the HI skin phenotype. The cytokines IL-36α and IL-36γ were upregulated in HI skin whereas the innate immune inhibitor, IL-37, was strongly downregulated. We also identified STAT1 and its downstream target inducible nitric oxide synthase (NOS2) to be upregulated in the in vitro HI 3D model and HI patient skin samples. Inhibition of NOS2 using the inhibitor, 1400W, or the JAK inhibitor, tofacitinib, dramatically improved the in vitro HI phenotype by restoring the lipid barrier in the HI 3D model. Our study has identified dysregulated pathways in HI skin that are feasible therapeutic targets.

Authors

Florence Enjalbert, Priya Dewan, Matthew P. Caley, Eleri M. Jones, Mary A. Morse, David P. Kelsell, Anton J. Enright, Edel A. O'Toole

×

Hair follicle stem cell replication stress drives IFI16/STING-dependent inflammation in hidradenitis suppurativa
Cindy Orvain, … , Yves Levy, Sophie Hue
Cindy Orvain, … , Yves Levy, Sophie Hue
Published April 2, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI131180.
View: Text | PDF

Hair follicle stem cell replication stress drives IFI16/STING-dependent inflammation in hidradenitis suppurativa

  • Text
  • PDF
Abstract

Hidradenitis suppurativa (HS) is a chronic, relapsing, inflammatory skin disease. HS appears to be a primary abnormality in the pilosebaceous-apocrine unit. In this work, we characterized hair follicle stem cells isolated from HS patients and more precisely the Outer Root Sheath Cells (ORS). We show that hair follicles from HS patients have an increased number of proliferating progenitor cells and lose quiescent stem cells. Remarkably, we also show that the progression of replication forks is altered in HS-ORS and activates the ATR-CHK1 pathway. These alterations are associated with an increased number of micronuclei and with the presence of cytoplasmic ssDNA, leading to the activation of IFI16-STING pathway and the production of type I IFNs. This mechanistic analysis of the etiology of HS in the hair follicle stem cells compartment establishes a formal link between the genetic predisposition and skin inflammation observed in HS.

Authors

Cindy Orvain, Yea-Lih Lin, Francette Jean-Louis, Hakim Hocini, Barbara Hersant, Yamina Bennasser, Nicolas Ortonne, Claire Hotz, Pierre Wolkenstein, Michele Boniotto, Pascaline Tisserand, Cecile Lefebvre, Jean-Daniel Lelievre, Monsef Benkirane, Philippe Pasero, Yves Levy, Sophie Hue

×

KLK6 expression in skin induces PAR1-mediated psoriasiform dermatitis and inflammatory joint disease
Allison C. Billi, … , Johann E. Gudjonsson, Nicole L. Ward
Allison C. Billi, … , Johann E. Gudjonsson, Nicole L. Ward
Published March 10, 2020
Citation Information: J Clin Invest. 2020. https://doi.org/10.1172/JCI133159.
View: Text | PDF

KLK6 expression in skin induces PAR1-mediated psoriasiform dermatitis and inflammatory joint disease

  • Text
  • PDF
Abstract

Kallikrein-related peptidase 6 (KLK6) is a secreted serine protease hypothesized to promote inflammation via cleavage of protease-activated receptors (PAR)1 and PAR2. KLK6 levels are elevated in multiple inflammatory and autoimmune conditions, but no definitive role in pathogenesis has been established. Here, we show that skin-targeted overexpression of KLK6 causes generalized, severe psoriasiform dermatitis with spontaneous development of debilitating psoriatic arthritis-like joint disease. The psoriatic skin and joint phenotypes are reversed by normalization of skin KLK6 levels and attenuated following genetic elimination of PAR1 but not PAR2. Conservation of this regulatory pathway was confirmed in human psoriasis using vorapaxar, an FDA-approved PAR1 antagonist, on explanted lesional skin from psoriasis patients. Beyond defining a critical role for KLK6-PAR1 signaling in promoting psoriasis, our results demonstrate that KLK6-PAR1-mediated inflammation in the skin alone is sufficient to drive inflammatory joint disease. Further, we identify PAR1 as a promising cytokine-independent target in therapy of psoriasis and psoriatic arthritis.

Authors

Allison C. Billi, Jessica E. Ludwig, Yi Fritz, Richard Rozic, William R. Swindell, Lam C. Tsoi, Dennis Gruszka, Shahla Abdollahi-Roodsaz, Xianying Xing, Doina Diaconu, Ranjitha Uppala, Maya I. Camhi, Philip A. Klenotic, Mrinal K. Sarkar, M. Elaine Husni, Jose U. Scher, Christine McDonald, J. Michelle Kahlenberg, Ronald J. Midura, Johann E. Gudjonsson, Nicole L. Ward

×

IL-36γ drives skin toxicity induced by EGFR/MEK inhibition and commensal Cutibacterium acnes
Takashi K. Satoh, … , Emmanuel Contassot, Lars E. French
Takashi K. Satoh, … , Emmanuel Contassot, Lars E. French
Published December 5, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI128678.
View: Text | PDF

IL-36γ drives skin toxicity induced by EGFR/MEK inhibition and commensal Cutibacterium acnes

  • Text
  • PDF
Abstract

Epidermal growth factor receptor (EGFR) and MEK inhibitors (EGFR/MEKi) are beneficial for the treatment of solid cancers but are frequently associated with severe therapy-limiting acneiform skin toxicities. The underlying molecular mechanisms are poorly understood. Using gene expression profiling we identified IL-36γ and IL-8 as candidate drivers of EGFR/MEKi skin toxicity. We provide molecular and translational evidence that EGFR/MEKi in concert with the skin commensal bacterium Cutibacterium acnes act synergistically to induce IL-36γ in keratinocytes and subsequently IL-8, leading to cutaneous neutrophilia. IL-36γ expression was the combined result of C. acnes-induced NF-κB activation and EGFR/MEKi-mediated expression of the transcription factor Krüppel-like factor 4 (KLF4), due to the presence of both NF-κB- and KLF4-binding sites in the human IL-36γ gene promoter. EGFR/MEKi increased KLF4 expression by blockade of the EGFR-MEK-ERK pathway. These results provide an insight into understanding the pathological mechanism of the acneiform skin toxicities induced by EGFR/MEKi and identify IL-36γ and the transcription factor KLF4 as potential therapeutic targets.

Authors

Takashi K. Satoh, Mark Mellett, Barbara Meier-Schiesser, Gabriele Fenini, Atsushi Otsuka, Hans-Dietmar Beer, Tamara Rordorf, Julia-Tatjana Maul, Jürg Hafner, Alexander A. Navarini, Emmanuel Contassot, Lars E. French

×

SDR9C7 catalyzes critical dehydrogenation of acylceramides for skin barrier formation
Takuya Takeichi, … , Alan R. Brash, Masashi Akiyama
Takuya Takeichi, … , Alan R. Brash, Masashi Akiyama
Published October 31, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI130675.
View: Text | PDF

SDR9C7 catalyzes critical dehydrogenation of acylceramides for skin barrier formation

  • Text
  • PDF
Abstract

The corneocyte lipid envelope composed of covalently bound ceramides and fatty acids is important to the integrity of the permeability barrier in the stratum corneum, and its absence is a prime structural defect in various skin diseases associated with defective skin barrier function. SDR9C7 encodes a short chain dehydrogenase/reductase family 9C member 7 (SDR9C7) recently found mutated in ichthyosis. In a patient with SDR9C7 mutation and a mouse Sdr9c7 knockout model we show loss of covalent binding of epidermal ceramides to protein, a structural fault in the barrier. For reasons unresolved, protein binding requires lipoxygenase-catalyzed transformations of linoleic acid (18:2) esterified in ω-O-acylceramides. In Sdr9c7-/- epidermis, quantitative LC-MS assays revealed almost complete loss of a species of ω-O-acylceramide esterified with linoleate-9,10-trans-epoxy-11E-13-ketone; other acylceramides related to the lipoxygenase pathway were in higher abundance. Recombinant SDR9C7 catalyzed NAD+-dependent dehydrogenation of linoleate 9,10-trans-epoxy-11E-13-alcohol to the corresponding 13-ketone, while ichthyosis mutants were inactive. We propose, therefore, that the critical requirement for lipoxygenases and SDR9C7 is in producing acylceramide containing the 9,10-epoxy-11E-13-ketone, a reactive moiety known for its non-enzymatic coupling to protein. This suggests a mechanism for coupling of ceramide to protein and provides important insights into skin barrier formation and pathogenesis.

Authors

Takuya Takeichi, Tetsuya Hirabayashi, Yuki Miyasaka, Akane Kawamoto, Yusuke Okuno, Shijima Taguchi, Kana Tanahashi, Chiaki Murase, Hiroyuki Takama, Kosei Tanaka, William E. Boeglin, M. Wade Calcutt, Daisuke Watanabe, Michihiro Kono, Yoshinao Muro, Junko Ishikawa, Tamio Ohno, Alan R. Brash, Masashi Akiyama

×

Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice
Zhuzhen Zhang, … , Rana K. Gupta, Philipp E. Scherer
Zhuzhen Zhang, … , Rana K. Gupta, Philipp E. Scherer
Published September 10, 2019
Citation Information: J Clin Invest. 2019. https://doi.org/10.1172/JCI130239.
View: Text | PDF

Dermal adipose tissue has high plasticity and undergoes reversible dedifferentiation in mice

  • Text
  • PDF
Abstract

Dermal adipose tissue (dWAT) has been the focus of much discussion in recent years. However, dWAT remains poorly characterized. The fate of the mature dermal adipocytes and the origin of the rapidly re-appearing dermal adipocytes at different stages remain unclear. Here, we isolated dermal adipocytes and characterized dermal fat at the cellular and molecular level. Together with its dynamic responses to external stimuli, we established that dermal adipocytes are a distinct class of white adipocytes with high plasticity. By combining pulse-chase lineage tracing and single cell RNA-sequencing, we observed that mature dermal adipocytes undergo de-differentiation and re-differentiation under physiological and pathophysiological conditions. Upon various challenges, the de-differentiated cells proliferate and re-differentiate into adipocytes. In addition, manipulation of dWAT highlighted an important role for mature dermal adipocytes for hair cycling and wound healing. Altogether, these observations unravel a surprising plasticity of dermal adipocytes and provide an explanation for the dynamic changes in dWAT mass that occur under physiological and pathophysiological conditions, and highlight the important contributions of dWAT towards maintaining skin homeostasis.

Authors

Zhuzhen Zhang, Mengle Shao, Chelsea Hepler, Zhenzhen Zi, Shangang Zhao, Yu A. An, Yi Zhu, Alexandra Ghaben, May-yun Wang, Na Li, Toshiharu Onodera, Nolwenn Joffin, Clair Crewe, Qingzhang Zhu, Lavanya Vishvanath, Ashwani Kumar, Chao Xing, Qiong A. Wang, Laurent Gautron, Yingfeng Deng, Ruth Gordillo, Ilja Kruglikov, Christine M. Kusminski, Rana K. Gupta, Philipp E. Scherer

×
  • ← Previous
  • 1
  • 2
  • 3
  • …
  • 8
  • 9
  • Next →
The “skin”ny on epidermal RAC1 in psoriasis pathogenesis
Mårten C.G. Winge and colleagues characterize the role of RAC1 in the autoimmune disorder, psoriasis…
Published June 13, 2016
Scientific Show StopperDermatology
Advertisement
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts