Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Pancreatic Cancer (Jul 2025)
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

AIDS/HIV

  • 157 Articles
  • 2 Posts
  • ← Previous
  • 1
  • 2
  • …
  • 10
  • 11
  • 12
  • …
  • 15
  • 16
  • Next →
Autophagy facilitates macrophage depots of sustained-release nanoformulated antiretroviral drugs
Divya Prakash Gnanadhas, … , Howard E. Gendelman, Santhi Gorantla
Divya Prakash Gnanadhas, … , Howard E. Gendelman, Santhi Gorantla
Published January 30, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI90025.
View: Text | PDF

Autophagy facilitates macrophage depots of sustained-release nanoformulated antiretroviral drugs

  • Text
  • PDF
Abstract

Long-acting anti-HIV products can substantively change the standard of care for patients with HIV/AIDS. To this end, hydrophobic antiretroviral drugs (ARVs) were recently developed for parenteral administration at monthly or longer intervals. While shorter-acting hydrophilic drugs can be made into nanocarrier-encased prodrugs, the nanocarrier encasement must be boosted to establish long-acting ARV depots. The mixed-lineage kinase 3 (MLK-3) inhibitor URMC-099 provides this function by affecting autophagy. Here, we have shown that URMC-099 facilitates ARV sequestration and its antiretroviral responses by promoting the nuclear translocation of the transcription factor EB (TFEB). In monocyte-derived macrophages, URMC-099 induction of autophagy led to retention of nanoparticles containing the antiretroviral protease inhibitor atazanavir. These nanoparticles were localized within macrophage autophagosomes, leading to a 4-fold enhancement of mitochondrial and cell vitality. In rodents, URMC-099 activation of autophagy led to 50-fold increases in the plasma drug concentration of the viral integrase inhibitor dolutegravir. These data paralleled URMC-099–mediated induction of autophagy and the previously reported antiretroviral responses in HIV-1–infected humanized mice. We conclude that pharmacologic induction of autophagy provides a means to extend the action of a long-acting, slow, effective release of antiretroviral therapy.

Authors

Divya Prakash Gnanadhas, Prasanta K. Dash, Brady Sillman, Aditya N. Bade, Zhiyi Lin, Diana L. Palandri, Nagsen Gautam, Yazen Alnouti, Harris A. Gelbard, JoEllyn McMillan, R. Lee Mosley, Benson Edagwa, Howard E. Gendelman, Santhi Gorantla

×

Rapamycin-mediated mTOR inhibition uncouples HIV-1 latency reversal from cytokine-associated toxicity
Alyssa R. Martin, … , Christine M. Durand, Robert F. Siliciano
Alyssa R. Martin, … , Christine M. Durand, Robert F. Siliciano
Published January 17, 2017
Citation Information: J Clin Invest. 2017. https://doi.org/10.1172/JCI89552.
View: Text | PDF

Rapamycin-mediated mTOR inhibition uncouples HIV-1 latency reversal from cytokine-associated toxicity

  • Text
  • PDF
Abstract

Current strategies for HIV-1 eradication require the reactivation of latent HIV-1 in resting CD4+ T cells (rCD4s). Global T cell activation is a well-characterized means of inducing HIV-1 transcription, but is considered too toxic for clinical applications. Here, we have explored a strategy that involves a combination of immune activation and the immunosuppressive mTOR inhibitor rapamycin. In purified rCD4s from HIV-1–infected individuals on antiretroviral therapy, rapamycin treatment downregulated markers of toxicity, including proinflammatory cytokine release and cellular proliferation that were induced after potent T cell activation using αCD3/αCD28 antibodies. Using an ex vivo assay for HIV-1 mRNA, we demonstrated that despite this immunomodulatory effect, rapamycin did not affect HIV-1 gene expression induced by T cell activation in these rCD4s. In contrast, treating activated rCD4s with the immunosuppressant cyclosporin, a calcineurin inhibitor, robustly inhibited HIV-1 reactivation. Importantly, rapamycin treatment did not impair cytotoxic T lymphocyte (CTL) recognition and killing of infected cells. These findings raise the possibility of using rapamycin in conjunction with T cell–activating agents in HIV-1 cure strategies.

Authors

Alyssa R. Martin, Ross A. Pollack, Adam Capoferri, Richard F. Ambinder, Christine M. Durand, Robert F. Siliciano

×

Targeting type I interferon–mediated activation restores immune function in chronic HIV infection
Anjie Zhen, … , David G. Brooks, Scott G. Kitchen
Anjie Zhen, … , David G. Brooks, Scott G. Kitchen
Published December 12, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI89488.
View: Text | PDF

Targeting type I interferon–mediated activation restores immune function in chronic HIV infection

  • Text
  • PDF
Abstract

Chronic immune activation, immunosuppression, and T cell exhaustion are hallmarks of HIV infection, yet the mechanisms driving these processes are unclear. Chronic activation can be a driving force in immune exhaustion, and type I interferons (IFN-I) are emerging as critical components underlying ongoing activation in HIV infection. Here, we have tested the effect of blocking IFN-I signaling on T cell responses and virus replication in a murine model of chronic HIV infection. Using HIV-infected humanized mice, we demonstrated that in vivo blockade of IFN-I signaling during chronic HIV infection diminished HIV-driven immune activation, decreased T cell exhaustion marker expression, restored HIV-specific CD8 T cell function, and led to decreased viral replication. Antiretroviral therapy (ART) in combination with IFN-I blockade accelerated viral suppression, further decreased viral loads, and reduced the persistently infected HIV reservoir compared with ART treatment alone. Our data suggest that blocking IFN-I signaling in conjunction with ART treatment can restore immune function and may reduce viral reservoirs during chronic HIV infection, providing validation for IFN-I blockade as a potential therapy for HIV infection.

Authors

Anjie Zhen, Valerie Rezek, Cindy Youn, Brianna Lam, Nelson Chang, Jonathan Rick, Mayra Carrillo, Heather Martin, Saro Kasparian, Philip Syed, Nicholas Rice, David G. Brooks, Scott G. Kitchen

×

Blocking type I interferon signaling enhances T cell recovery and reduces HIV-1 reservoirs
Liang Cheng, … , Lishan Su, Liguo Zhang
Liang Cheng, … , Lishan Su, Liguo Zhang
Published December 12, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI90745.
View: Text | PDF

Blocking type I interferon signaling enhances T cell recovery and reduces HIV-1 reservoirs

  • Text
  • PDF
Abstract

Despite the efficient suppression of HIV-1 replication that can be achieved with combined antiretroviral therapy (cART), low levels of type I interferon (IFN-I) signaling persist in some individuals. This sustained signaling may impede immune recovery and foster viral persistence. Here we report studies using a monoclonal antibody to block IFN-α/β receptor (IFNAR) signaling in humanized mice (hu-mice) that were persistently infected with HIV-1. We discovered that effective cART restored the number of human immune cells in HIV-1–infected hu-mice but did not rescue their immune hyperactivation and dysfunction. IFNAR blockade fully reversed HIV-1–induced immune hyperactivation and rescued anti–HIV-1 immune responses in T cells from HIV-1–infected hu-mice. Finally, we found that IFNAR blockade in the presence of cART reduced the size of HIV-1 reservoirs in lymphoid tissues and delayed HIV-1 rebound after cART cessation in the HIV-1–infected hu-mice. We conclude that low levels of IFN-I signaling contribute to HIV-1–associated immune dysfunction and foster HIV-1 persistence in cART-treated hosts. Our results suggest that blocking IFNAR may provide a potential strategy to enhance immune recovery and reduce HIV-1 reservoirs in individuals with sustained elevations in IFN-I signaling during suppressive cART.

Authors

Liang Cheng, Jianping Ma, Jingyun Li, Dan Li, Guangming Li, Feng Li, Qing Zhang, Haisheng Yu, Fumihiko Yasui, Chaobaihui Ye, Li-Chung Tsao, Zhiyuan Hu, Lishan Su, Liguo Zhang

×

Stem-loop binding protein is a multifaceted cellular regulator of HIV-1 replication
Ming Li, … , Michelle A. Lally, Bharat Ramratnam
Ming Li, … , Michelle A. Lally, Bharat Ramratnam
Published July 25, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI82360.
View: Text | PDF

Stem-loop binding protein is a multifaceted cellular regulator of HIV-1 replication

  • Text
  • PDF
Abstract

A rare subset of HIV-1–infected individuals is able to maintain plasma viral load (VL) at low levels without antiretroviral treatment. Identifying the mechanisms underlying this atypical response to infection may lead to therapeutic advances for treating HIV-1. Here, we developed a proteomic analysis to compare peripheral blood cell proteomes in 20 HIV-1–infected individuals who maintained either high or low VL with the aim of identifying host factors that impact HIV-1 replication. We determined that the levels of multiple histone proteins were markedly decreased in cohorts of individuals with high VL. This reduction was correlated with lower levels of stem-loop binding protein (SLBP), which is known to control histone metabolism. Depletion of cellular SLBP increased promoter engagement with the chromatin structures of the host gene high mobility group protein A1 (HMGA1) and viral long terminal repeat (LTR), which led to higher levels of HIV-1 genomic integration and proviral transcription. Further, we determined that TNF-α regulates expression of SLBP and observed that plasma TNF-α levels in HIV-1–infected individuals correlated directly with VL levels and inversely with cellular SLBP levels. Our findings identify SLBP as a potentially important cellular regulator of HIV-1, thereby establishing a link between histone metabolism, inflammation, and HIV-1 infection.

Authors

Ming Li, Lynne D. Tucker, John M. Asara, Collins K. Cheruiyot, Huafei Lu, Zhijin J. Wu, Michael C. Newstein, Mark S. Dooner, Jennifer Friedman, Michelle A. Lally, Bharat Ramratnam

×

IL-15 promotes activation and expansion of CD8+ T cells in HIV-1 infection
Souheil-Antoine Younes, … , Scott F. Sieg, Michael M. Lederman
Souheil-Antoine Younes, … , Scott F. Sieg, Michael M. Lederman
Published June 20, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI85996.
View: Text | PDF

IL-15 promotes activation and expansion of CD8+ T cells in HIV-1 infection

  • Text
  • PDF
Abstract

In HIV-1–infected patients, increased numbers of circulating CD8+ T cells are linked to increased risk of morbidity and mortality. Here, we identified a bystander mechanism that promotes CD8 T cell activation and expansion in untreated HIV-1–infected patients. Compared with healthy controls, untreated HIV-1–infected patients have an increased population of proliferating, granzyme B+, CD8+ T cells in circulation. Vβ expression and deep sequencing of CDR3 revealed that in untreated HIV-1 infection, cycling memory CD8 T cells possess a broad T cell repertoire that reflects the repertoire of the resting population. This suggests that cycling is driven by bystander activation, rather than specific antigen exposure. Treatment of peripheral blood mononuclear cells with IL-15 induced a cycling, granzyme B+ phenotype in CD8+ T cells. Moreover, elevated IL-15 expression in the lymph nodes of untreated HIV-1–infected patients correlated with circulating CD8+ T cell counts and was normalized in these patients following antiretroviral therapy. Together, these results suggest that IL-15 drives bystander activation of CD8+ T cells, which predicts disease progression in untreated HIV-1–infected patients and suggests that elevated IL-15 may also drive CD8+ T cell expansion that is linked to increased morbidity and mortality in treated patients.

Authors

Souheil-Antoine Younes, Michael L. Freeman, Joseph C. Mudd, Carey L. Shive, Arnold Reynaldi, Soumya Panigrahi, Jacob D. Estes, Claire Deleage, Carissa Lucero, Jodi Anderson, Timothy W. Schacker, Miles P. Davenport, Joseph M. McCune, Peter W. Hunt, Sulggi A. Lee, Sergio Serrano-Villar, Robert L. Debernardo, Jeffrey M. Jacobson, David H. Canaday, Rafick-Pierre Sekaly, Benigno Rodriguez, Scott F. Sieg, Michael M. Lederman

×

Enhanced antagonism of BST-2 by a neurovirulent SIV envelope
Kenta Matsuda, … , Klaus Strebel, Vanessa M. Hirsch
Kenta Matsuda, … , Klaus Strebel, Vanessa M. Hirsch
Published May 9, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI83725.
View: Text | PDF

Enhanced antagonism of BST-2 by a neurovirulent SIV envelope

  • Text
  • PDF
Abstract

Current antiretroviral therapy (ART) is not sufficient to completely suppress disease progression in the CNS, as indicated by the rising incidence of HIV-1–associated neurocognitive disorders (HAND) among infected individuals on ART. It is not clear why some HIV-1–infected patients develop HAND, despite effective repression of viral replication in the circulation. SIV-infected nonhuman primate models are widely used to dissect the mechanisms of viral pathogenesis in the CNS. Here, we identified 4 amino acid substitutions in the cytoplasmic tail of viral envelope glycoprotein gp41 of the neurovirulent virus SIVsm804E that enhance replication in macrophages and associate with enhanced antagonism of the host restriction factor BM stromal cell antigen 2 (BST-2). Rhesus macaques were inoculated with a variant of the parental virus SIVsmE543-3 that had been engineered to contain the 4 amino acid substitutions present in gp41 of SIVsm804E. Compared with WT virus–infected controls, animals infected with mutant virus exhibited higher viral load in cerebrospinal fluid. Together, these results are consistent with a potential role for BST-2 in the CNS microenvironment and suggest that BST-2 antagonists may serve as a possible target for countermeasures against HAND.

Authors

Kenta Matsuda, Chia-Yen Chen, Sonya Whitted, Elena Chertova, David J. Roser, Fan Wu, Ronald J. Plishka, Ilnour Ourmanov, Alicia Buckler-White, Jeffrey D. Lifson, Klaus Strebel, Vanessa M. Hirsch

×

Public T cell receptors confer high-avidity CD4 responses to HIV controllers
Daniela Benati, … , Fernando Arenzana-Seisdedos, Lisa A. Chakrabarti
Daniela Benati, … , Fernando Arenzana-Seisdedos, Lisa A. Chakrabarti
Published April 25, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI83792.
View: Text | PDF

Public T cell receptors confer high-avidity CD4 responses to HIV controllers

  • Text
  • PDF
Abstract

The rare patients who are able to spontaneously control HIV replication in the absence of therapy show signs of a particularly efficient cellular immune response. To identify the molecular determinants that underlie this response, we characterized the T cell receptor (TCR) repertoire directed at Gag293, the most immunoprevalent CD4 epitope in the HIV-1 capsid. HIV controllers from the ANRS CODEX cohort showed a highly skewed TCR repertoire that was characterized by a predominance of TRAV24 and TRBV2 variable genes, shared CDR3 motifs, and a high frequency of public clonotypes. The most prevalent public clonotypes generated TCRs with affinities at the higher end of values reported for naturally occurring TCRs. The high-affinity Gag293-specific TCRs were cross-restricted by up to 5 distinct HLA-DR alleles, accounting for the expression of these TCRs in HIV controllers of diverse genetic backgrounds. Transfer of these TCRs to healthy donor CD4+ T cells conferred high antigen sensitivity and polyfunctionality, thus recapitulating key features of the controller CD4 response. Transfer of a high-affinity Gag293-specific TCR also redirected CD8+ T cells to target HIV-1 capsid via nonconventional MHC II restriction. Together, these findings indicate that TCR clonotypes with superior functions are associated with HIV control. Amplification or transfer of such clonotypes may contribute to immunotherapeutic approaches aiming at a functional HIV cure.

Authors

Daniela Benati, Moran Galperin, Olivier Lambotte, Stéphanie Gras, Annick Lim, Madhura Mukhopadhyay, Alexandre Nouël, Kristy-Anne Campbell, Brigitte Lemercier, Mathieu Claireaux, Samia Hendou, Pierre Lechat, Pierre de Truchis, Faroudy Boufassa, Jamie Rossjohn, Jean-François Delfraissy, Fernando Arenzana-Seisdedos, Lisa A. Chakrabarti

×

Macrophages sustain HIV replication in vivo independently of T cells
Jenna B. Honeycutt, … , Joseph J. Eron, J. Victor Garcia
Jenna B. Honeycutt, … , Joseph J. Eron, J. Victor Garcia
Published March 7, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI84456.
View: Text | PDF

Macrophages sustain HIV replication in vivo independently of T cells

  • Text
  • PDF
Abstract

Macrophages have long been considered to contribute to HIV infection of the CNS; however, a recent study has contradicted this early work and suggests that myeloid cells are not an in vivo source of virus production. Here, we addressed the role of macrophages in HIV infection by first analyzing monocytes isolated from viremic patients and patients undergoing antiretroviral treatment. We were unable to find viral DNA or viral outgrowth in monocytes isolated from peripheral blood. To determine whether tissue macrophages are productively infected, we used 3 different but complementary humanized mouse models. Two of these models (bone marrow/liver/thymus [BLT] mice and T cell–only mice [ToM]) have been previously described, and the third model was generated by reconstituting immunodeficient mice with human CD34+ hematopoietic stem cells that were devoid of human T cells (myeloid-only mice [MoM]) to specifically evaluate HIV replication in this population. Using MoM, we demonstrated that macrophages can sustain HIV replication in the absence of T cells; HIV-infected macrophages are distributed in various tissues including the brain; replication-competent virus can be rescued ex vivo from infected macrophages; and infected macrophages can establish de novo infection. Together, these results demonstrate that macrophages represent a genuine target for HIV infection in vivo that can sustain and transmit infection.

Authors

Jenna B. Honeycutt, Angela Wahl, Caroline Baker, Rae Ann Spagnuolo, John Foster, Oksana Zakharova, Stephen Wietgrefe, Carolina Caro-Vegas, Victoria Madden, Garrett Sharpe, Ashley T. Haase, Joseph J. Eron, J. Victor Garcia

×

ART influences HIV persistence in the female reproductive tract and cervicovaginal secretions
Rikke Olesen, … , Angela Wahl, J. Victor Garcia
Rikke Olesen, … , Angela Wahl, J. Victor Garcia
Published February 8, 2016
Citation Information: J Clin Invest. 2016. https://doi.org/10.1172/JCI64212.
View: Text | PDF

ART influences HIV persistence in the female reproductive tract and cervicovaginal secretions

  • Text
  • PDF
Abstract

The recently completed HIV prevention trials network study 052 is a landmark collaboration demonstrating that HIV transmission in discordant couples can be dramatically reduced by treating the infected individual with antiretroviral therapy (ART). However, the cellular and virological events that occur in the female reproductive tract (FRT) during ART that result in such a drastic decrease in transmission were not studied and remain unknown. Here, we implemented an in vivo model of ART in BM/liver/thymus (BLT) humanized mice in order to better understand the ability of ART to prevent secondary HIV transmission. We demonstrated that the entire FRT of BLT mice is reconstituted with human CD4+ cells that are shed into cervicovaginal secretions (CVS). A high percentage of the CD4+ T cells in the FRT and CVS expressed CCR5 and therefore are potential HIV target cells. Infection with HIV increased the numbers of CD4+ and CD8+ T cells in CVS of BLT mice. Furthermore, HIV was present in CVS during infection. Finally, we evaluated the effect of ART on HIV levels in the FRT and CVS and demonstrated that ART can efficiently suppress cell-free HIV-RNA in CVS, despite residual levels of HIV-RNA+ cells in both the FRT and CVS.

Authors

Rikke Olesen, Michael D. Swanson, Martina Kovarova, Tomonori Nochi, Morgan Chateau, Jenna B. Honeycutt, Julie M. Long, Paul W. Denton, Michael G. Hudgens, Amy Richardson, Martin Tolstrup, Lars Østergaard, Angela Wahl, J. Victor Garcia

×
  • ← Previous
  • 1
  • 2
  • …
  • 10
  • 11
  • 12
  • …
  • 15
  • 16
  • Next →
Insight into CD8+ T cell expansion during HIV-1 infection
Souheil-Antoine Younes and colleagues provide evidence that IL-15 is involved in the expansion of CD8+ T cells in chronic HIV infection...
Published June 20, 2016
Scientific Show StopperAIDS/HIV

Designer proteins to hunt and kill latent HIV-1
Julia Sung, Joy Pickeral, Liquin Liu and colleagues developed designer proteins that detect and destroy rare populations of HIV-infected cells…
Published September 28, 2015
Scientific Show StopperAIDS/HIV
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts