Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Review Series

Immunometabolism

Series edited by Jonathan D. Powell

Studies of the metabolic reprogramming that occurs in activated immune cells may reveal critical therapeutic nodes in immune-related disorders and provide guidance for fine-tuning immune-targeted therapies. In this series, curated by Jonathan Powell, reviews focus on the metabolic pathways underlying immune involvement in disease and treatment: strategies to enhance immune memory, vaccine responses, and cancer immunotherapy by optimizing memory T cell metabolism; metabolites that modulate immune function; the metabolites of the tumor microenvironment that reshape immune cell function in the tumor’s favor; metabolism-targeted small molecule inhibitors developed for oncology applications; and dyslipidemia in autoimmune rheumatic diseases. Together, the reviews illustrate the complex energetic dynamics supporting function and dysfunction in the innate and adaptive immune systems.

Articles in series

Targeting memory T cell metabolism to improve immunity
Mauro Corrado, Erika L. Pearce
Mauro Corrado, Erika L. Pearce
Published January 4, 2022
Citation Information: J Clin Invest. 2022;132(1):e148546. https://doi.org/10.1172/JCI148546.
View: Text | PDF

Targeting memory T cell metabolism to improve immunity

  • Text
  • PDF
Abstract

Vaccination affords protection from disease by activating pathogen-specific immune cells and facilitating the development of persistent immunologic memory toward the vaccine-specific pathogen. Current vaccine regimens are often based on the efficiency of the acute immune response, and not necessarily on the generation of memory cells, in part because the mechanisms underlying the development of efficient immune memory remain incompletely understood. This Review describes recent advances in defining memory T cell metabolism and how metabolism of these cells might be altered in patients affected by mitochondrial diseases or metabolic syndrome, who show higher susceptibility to recurrent infections and higher rates of vaccine failure. It discusses how this new understanding could add to the way we think about immunologic memory, vaccine development, and cancer immunotherapy.

Authors

Mauro Corrado, Erika L. Pearce

×

The role of itaconate in host defense and inflammation
Christian G. Peace, Luke A.J. O’Neill
Christian G. Peace, Luke A.J. O’Neill
Published January 18, 2022
Citation Information: J Clin Invest. 2022;132(2):e148548. https://doi.org/10.1172/JCI148548.
View: Text | PDF

The role of itaconate in host defense and inflammation

  • Text
  • PDF
Abstract

Macrophages exposed to inflammatory stimuli including LPS undergo metabolic reprogramming to facilitate macrophage effector function. This metabolic reprogramming supports phagocytic function, cytokine release, and ROS production that are critical to protective inflammatory responses. The Krebs cycle is a central metabolic pathway within all mammalian cell types. In activated macrophages, distinct breaks in the Krebs cycle regulate macrophage effector function through the accumulation of several metabolites that were recently shown to have signaling roles in immunity. One metabolite that accumulates in macrophages because of the disturbance in the Krebs cycle is itaconate, which is derived from cis-aconitate by the enzyme cis-aconitate decarboxylase (ACOD1), encoded by immunoresponsive gene 1 (Irg1). This Review focuses on itaconate’s emergence as a key immunometabolite with diverse roles in immunity and inflammation. These roles include inhibition of succinate dehydrogenase (which controls levels of succinate, a metabolite with multiple roles in inflammation), inhibition of glycolysis at multiple levels (which will limit inflammation), activation of the antiinflammatory transcription factors Nrf2 and ATF3, and inhibition of the NLRP3 inflammasome. Itaconate and its derivatives have antiinflammatory effects in preclinical models of sepsis, viral infections, psoriasis, gout, ischemia/reperfusion injury, and pulmonary fibrosis, pointing to possible itaconate-based therapeutics for a range of inflammatory diseases. This intriguing metabolite continues to yield fascinating insights into the role of metabolic reprogramming in host defense and inflammation.

Authors

Christian G. Peace, Luke A.J. O’Neill

×

Fighting in a wasteland: deleterious metabolites and antitumor immunity
McLane J. Watson, Greg M. Delgoffe
McLane J. Watson, Greg M. Delgoffe
Published January 18, 2022
Citation Information: J Clin Invest. 2022;132(2):e148549. https://doi.org/10.1172/JCI148549.
View: Text | PDF

Fighting in a wasteland: deleterious metabolites and antitumor immunity

  • Text
  • PDF
Abstract

As cancers progress, they produce a local environment that acts to redirect, paralyze, exhaust, or otherwise evade immune detection and destruction. The tumor microenvironment (TME) has long been characterized as a metabolic desert, depleted of essential nutrients such as glucose, oxygen, and amino acids, that starves infiltrating immune cells and renders them dysfunctional. While not incorrect, this perspective is only half the picture. The TME is not a metabolic vacuum, only consuming essential nutrients and never producing by-products. Rather, the by-products of depleted nutrients, “toxic” metabolites in the TME such as lactic acid, kynurenine, ROS, and adenosine, play an important role in shaping immune cell function and cannot be overlooked in cancer immunotherapy. Moreover, while the metabolic landscape is distinct, it is not unique, as these toxic metabolites are encountered in non-tumor tissues, where they evolutionarily shape immune cells and their response. In this Review, we discuss how depletion of essential nutrients and production of toxic metabolites shape the immune response within the TME and how toxic metabolites can be targeted to improve current cancer immunotherapies.

Authors

McLane J. Watson, Greg M. Delgoffe

×

Clinical development of metabolic inhibitors for oncology
Kathryn M. Lemberg, … , Rana Rais, Barbara S. Slusher
Kathryn M. Lemberg, … , Rana Rais, Barbara S. Slusher
Published January 4, 2022
Citation Information: J Clin Invest. 2022;132(1):e148550. https://doi.org/10.1172/JCI148550.
View: Text | PDF

Clinical development of metabolic inhibitors for oncology

  • Text
  • PDF
Abstract

Metabolic inhibitors have been used in oncology for decades, dating back to antimetabolites developed in the 1940s. In the past 25 years, there has been increased recognition of metabolic derangements in tumor cells leading to a resurgence of interest in targeting metabolism. More recently there has been recognition that drugs targeting tumor metabolism also affect the often acidic, hypoxic, immunosuppressive tumor microenvironment (TME) and non-tumor cell populations within it, including immune cells. Here we review small-molecule metabolic inhibitors currently in clinical development for oncology applications. For each agent, we evaluate the preclinical studies demonstrating antitumor and TME effects and review ongoing clinical trials. The goal of this Review is to provide an overview of the landscape of metabolic inhibitors in clinical development for oncology.

Authors

Kathryn M. Lemberg, Sadakatali S. Gori, Takashi Tsukamoto, Rana Rais, Barbara S. Slusher

×

Lipid metabolism in autoimmune rheumatic disease: implications for modern and conventional therapies
George Robinson, … , Coziana Ciurtin, Elizabeth C. Jury
George Robinson, … , Coziana Ciurtin, Elizabeth C. Jury
Published January 18, 2022
Citation Information: J Clin Invest. 2022;132(2):e148552. https://doi.org/10.1172/JCI148552.
View: Text | PDF

Lipid metabolism in autoimmune rheumatic disease: implications for modern and conventional therapies

  • Text
  • PDF
Abstract

Suppressing inflammation has been the primary focus of therapies in autoimmune rheumatic diseases (AIRDs), including rheumatoid arthritis and systemic lupus erythematosus. However, conventional therapies with low target specificity can have effects on cell metabolism that are less predictable. A key example is lipid metabolism; current therapies can improve or exacerbate dyslipidemia. Many conventional drugs also require in vivo metabolism for their conversion into therapeutically beneficial products; however, drug metabolism often involves the additional formation of toxic by-products, and rates of drug metabolism can be heterogeneous between patients. New therapeutic technologies and research have highlighted alternative metabolic pathways that can be more specifically targeted to reduce inflammation but also to prevent undesirable off-target metabolic consequences of conventional antiinflammatory therapies. This Review highlights the role of lipid metabolism in inflammation and in the mechanisms of action of AIRD therapeutics. Opportunities for cotherapies targeting lipid metabolism that could reduce immunometabolic complications and potential increased cardiovascular disease risk in patients with AIRDs are discussed.

Authors

George Robinson, Ines Pineda-Torra, Coziana Ciurtin, Elizabeth C. Jury

×

Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts