In this video, Dr. Seth J. Zost presents an antibody lineage from a single donor that binds the active site of influenza neuraminidase, cross-reacts with antigenically diverse viruses, and protects mice from infection.
Influenza type A viruses (IAVs) remain an extraordinary burden to global public health and regularly circulate through human populations. This investigation describes the isolation of human mAbs from an individual with a substantial history of influenza exposure via vaccination and natural infection. From these mAbs, a clonally expanded B cell lineage was identified that recognizes the IAV neuraminidase (NA) glycoprotein and binds near the NA active site of H3N2 viruses to inhibit sialidase activity. Further characterization found that some somatically mutated members of this lineage exhibited cross-reactive binding to recombinant N1 and N9 antigens, suggesting that heterosubtypic reactivity was acquired through somatic mutation. Two candidate mAbs from this family — FluA-168 and FluA-173 — potently inhibited IAV replication in vitro and protected against lethality in vivo. The results of this study contribute to our understanding of cross-reactivity between IAV subtypes in response to diverse exposure patterns and identified 2 mAbs as potential therapeutic candidates for IAV infection.
Ty A. Sornberger, Rachael M. Wolters, Iuliia M. Gilchuk, Luke Myers, Elad Binshtein, Ryan Irving, Elaine C. Chen, Pavlo Gilchuk, Rachel S. Nargi, Rachel E. Sutton, Bethany N. Howard, Laura S. Handal, Andrew Trivette, Katherine E. Webb, Chandrahaas Kona, Eduardo Villalobos, Lauren E. Williamson, James E. Crowe Jr., Seth J. Zost