Hepatic insulin resistance affects both carbohydrate and lipid metabolism. It has been proposed that insulin controls these 2 metabolic branches through distinct signaling pathways. FoxO transcription factors are considered effectors of the pathway regulating hepatic glucose production. Here we show that adenoviral delivery of constitutively nuclear forkhead box O1 (FoxO1) to mouse liver results in steatosis arising from increased triglyceride accumulation and decreased fatty acid oxidation. FoxO1 gain of function paradoxically increased insulin sensitivity by promoting Akt phosphorylation, while FoxO1 inhibition via siRNA decreased it. We show that FoxO1 regulation of Akt phosphorylation does not require DNA binding and is associated with repression of the pseudokinase tribble 3 (Trb3), a modulator of Akt activity. This unexpected dual role of FoxO1 in promoting insulin sensitivity and lipid synthesis in addition to glucose production has the potential to explain the peculiar admixture of insulin resistance and sensitivity that is commonly observed in the metabolic syndrome.
Michihiro Matsumoto, Seongah Han, Tadahiro Kitamura, Domenico Accili
Many homeostatic processes, including appetite and food intake, are controlled by neuroendocrine circuits involving the CNS. The CNS also directly regulates adipocyte metabolism, as we have shown here by examining central action of the orexigenic hormone ghrelin. Chronic central ghrelin infusion resulted in increases in the glucose utilization rate of white and brown adipose tissue without affecting skeletal muscle. In white adipocytes, mRNA expression of various fat storage–promoting enzymes such as lipoprotein lipase, acetyl-CoA carboxylase α, fatty acid synthase, and stearoyl-CoA desaturase–1 was markedly increased, while that of the rate-limiting step in fat oxidation, carnitine palmitoyl transferase–1α, was decreased. In brown adipocytes, central ghrelin infusion resulted in lowered expression of the thermogenesis-related mitochondrial uncoupling proteins 1 and 3. These ghrelin effects were dose dependent, occurred independently from ghrelin-induced hyperphagia, and seemed to be mediated by the sympathetic nervous system. Additionally, the expression of some fat storage enzymes was decreased in ghrelin-deficient mice, which led us to conclude that central ghrelin is of physiological relevance in the control of cell metabolism in adipose tissue. These results unravel the existence of what we believe to be a new CNS-based neuroendocrine circuit regulating metabolic homeostasis of adipose tissue.
Claudia Theander-Carrillo, Petra Wiedmer, Philippe Cettour-Rose, Ruben Nogueiras, Diego Perez-Tilve, Paul Pfluger, Tamara R. Castaneda, Patrick Muzzin, Annette Schürmann, Ildiko Szanto, Matthias H. Tschöp, Françoise Rohner-Jeanrenaud
Adipocytes secrete a variety of bioactive molecules that affect the insulin sensitivity of other tissues. We now show that the abundance of monocyte chemoattractant protein–1 (MCP-1) mRNA in adipose tissue and the plasma concentration of MCP-1 were increased both in genetically obese diabetic (db/db) mice and in WT mice with obesity induced by a high-fat diet. Mice engineered to express an MCP-1 transgene in adipose tissue under the control of the aP2 gene promoter exhibited insulin resistance, macrophage infiltration into adipose tissue, and increased hepatic triglyceride content. Furthermore, insulin resistance, hepatic steatosis, and macrophage accumulation in adipose tissue induced by a high-fat diet were reduced extensively in MCP-1 homozygous KO mice compared with WT animals. Finally, acute expression of a dominant-negative mutant of MCP-1 ameliorated insulin resistance in db/db mice and in WT mice fed a high-fat diet. These findings suggest that an increase in MCP-1 expression in adipose tissue contributes to the macrophage infiltration into this tissue, insulin resistance, and hepatic steatosis associated with obesity in mice.
Hajime Kanda, Sanshiro Tateya, Yoshikazu Tamori, Ko Kotani, Ken-ichi Hiasa, Riko Kitazawa, Sohei Kitazawa, Hitoshi Miyachi, Sakan Maeda, Kensuke Egashira, Masato Kasuga
Stearoyl-CoA desaturase–1 (SCD1) catalyzes the synthesis of monounsaturated fatty acids from saturated fatty acids. Mice with a targeted disruption of Scd1 gene locus are lean and display increased insulin sensitivity. To examine whether Scd1 activity is required for the development of diet-induced hepatic insulin resistance, we used a sequence-specific antisense oligodeoxynucleotide (ASO) to lower hepatic Scd1 expression in rats and mice with diet-induced insulin resistance. Treatment of rats with Scd1 ASO markedly decreased liver Scd1 expression (~80%) and total Scd activity (~50%) compared with that in rats treated with scrambled ASO (control). Insulin clamp studies revealed severe hepatic insulin resistance in high-fat–fed rats and mice that was completely reversed by 5 days of treatment with Scd1 ASO. The latter treatment decreased glucose production (by ~75%), gluconeogenesis, and glycogenolysis. Downregulation of Scd1 also led to increased Akt phosphorylation and marked decreases in the expression of glucose-6-phosphatase (Glc-6-Pase) and phosphoenolpyruvate carboxykinase (PEPCK). Thus, Scd1 is required for the onset of diet-induced hepatic insulin resistance.
Roger Gutiérrez-Juárez, Alessandro Pocai, Claudia Mulas, Hiraku Ono, Sanjay Bhanot, Brett P. Monia, Luciano Rossetti
Diabetes results from an absolute or relative reduction in pancreatic β cell mass (BCM) leading to insufficient insulin secretion and hyperglycemia. Measurement of insulin secretory capacity is currently used as a surrogate measure of BCM. However, serum insulin concentrations provide an imprecise index of BCM, and no reliable noninvasive measure of BCM is currently available. Type 2 vesicular monoamine transporters (VMAT2) are expressed in human islet β cells, as well as in tissues of the CNS. [11C]Dihydrotetrabenazine ([11C]DTBZ) binds specifically to VMAT2 and is a radioligand currently used in clinical imaging of the brain. Here we report the use of [11C]DTBZ to estimate BCM in a rodent model of spontaneous type 1 diabetes (the BB-DP rat). In longitudinal PET studies of the BB-DP rat, we found a significant decline in pancreatic uptake of [11C]DTBZ that anticipated the loss of glycemic control. Based on comparison of standardized uptake values (SUVs) of [11C]DTBZ and blood glucose concentrations, loss of more than 65% of the original SUV correlated significantly with the development of persistent hyperglycemia. These studies suggest that PET-based quantitation of VMAT2 receptors provides a noninvasive measurement of BCM that could be used to study the pathogenesis of diabetes and to monitor therapeutic interventions.
Fabiola Souza, Norman Simpson, Anthony Raffo, Chitra Saxena, Antonella Maffei, Mark Hardy, Michael Kilbourn, Robin Goland, Rudolph Leibel, J. John Mann, Ronald Van Heertum, Paul E. Harris
Recurrent episodes of hypoglycemia impair sympathoadrenal counterregulatory responses (CRRs) to a subsequent episode of hypoglycemia. For individuals with type 1 diabetes, this markedly increases (by 25-fold) the risk of severe hypoglycemia and is a major limitation to optimal insulin therapy. The mechanisms through which this maladaptive response occurs remain unknown. The corticotrophin-releasing factor (CRF) family of neuropeptides and their receptors (CRFR1 and CRFR2) play a critical role in regulating the neuroendocrine stress response. Here we show in the Sprague-Dawley rat that direct in vivo application to the ventromedial hypothalamus (VMH), a key glucose-sensing region, of urocortin I (UCN I), an endogenous CRFR2 agonist, suppressed (~55–60%), whereas CRF, a predominantly CRFR1 agonist, amplified (~50–70%) CRR to hypoglycemia. UCN I was shown to directly alter the glucose sensitivity of VMH glucose-sensing neurons in whole-cell current clamp recordings in brain slices. Interestingly, the suppressive effect of UCN I–mediated CRFR2 activation persisted for at least 24 hours after in vivo VMH microinjection. Our data suggest that regulation of the CRR is largely determined by the interaction between CRFR2-mediated suppression and CRFR1-mediated activation in the VMH.
Rory J. McCrimmon, Zhentao Song, Haiying Cheng, Ewan C. McNay, Catherine Weikart-Yeckel, Xiaoning Fan, Vanessa H. Routh, Robert S. Sherwin
Stuart P. Weisberg, Deborah Hunter, Reid Huber, Jacob Lemieux, Sarah Slaymaker, Kris Vaddi, Israel Charo, Rudolph L. Leibel, Anthony W. Ferrante Jr.
Safe induction of autoantigen-specific long-term tolerance is the “holy grail” for the treatment of autoimmune diseases. In animal models of type 1 diabetes, oral or i.n. immunization with islet antigens induces Tregs that are capable of bystander suppression. However, such interventions are only effective early in the prediabetic phase. Here, we demonstrate that a novel combination treatment with anti-CD3ε–specific antibody and i.n. proinsulin peptide can reverse recent-onset diabetes in 2 murine diabetes models with much higher efficacy than with monotherapy with anti-CD3 or antigen alone. In vivo, expansion of CD25+Foxp3+ and insulin-specific Tregs producing IL-10, TGF-β, and IL-4 was strongly enhanced. These cells could transfer dominant tolerance to immunocompetent recent-onset diabetic recipients and suppressed heterologous autoaggressive CD8 responses. Thus, combining a systemic immune modulator with antigen-specific Treg induction is more efficacious in reverting diabetes. Since Tregs act site-specifically, this strategy should also be expected to reduce the potential for systemic side effects.
Damien Bresson, Lisa Togher, Evelyn Rodrigo, Yali Chen, Jeffrey A. Bluestone, Kevan C. Herold, Matthias von Herrath
Short-term overfeeding blunts the central effects of fatty acids on food intake and glucose production. This acquired defect in nutrient sensing could contribute to the rapid onset of hyperphagia and insulin resistance in this model. Here we examined whether central inhibition of lipid oxidation is sufficient to restore the hypothalamic levels of long-chain fatty acyl-CoAs (LCFA-CoAs) and to normalize food intake and glucose homeostasis in overfed rats. To this end, we targeted the liver isoform of carnitine palmitoyltransferase-1 (encoded by the CPT1A gene) by infusing either a sequence-specific ribozyme against CPT1A or an isoform-selective inhibitor of CPT1A activity in the third cerebral ventricle or in the mediobasal hypothalamus (MBH). Inhibition of CPT1A activity normalized the hypothalamic levels of LCFA-CoAs and markedly inhibited feeding behavior and hepatic glucose fluxes in overfed rats. Thus central inhibition of lipid oxidation is sufficient to restore hypothalamic lipid sensing as well as glucose and energy homeostasis in this model and may be an effective approach to the treatment of diet-induced obesity and insulin resistance.
Alessandro Pocai, Tony K.T. Lam, Silvana Obici, Roger Gutierrez-Juarez, Evan D. Muse, Arduino Arduini, Luciano Rossetti
The C-C motif chemokine receptor–2 (CCR2) regulates monocyte and macrophage recruitment and is necessary for macrophage-dependent inflammatory responses and the development of atherosclerosis. Although adipose tissue expression and circulating concentrations of CCL2 (also known as MCP1), a high-affinity ligand for CCR2, are elevated in obesity, the role of CCR2 in metabolic disorders, including insulin resistance, hepatic steatosis, and inflammation associated with obesity, has not been studied. To determine what role CCR2 plays in the development of metabolic phenotypes, we studied the effects of Ccr2 genotype on the development of obesity and its associated phenotypes. Genetic deficiency in Ccr2 reduced food intake and attenuated the development of obesity in mice fed a high-fat diet. In obese mice matched for adiposity, Ccr2 deficiency reduced macrophage content and the inflammatory profile of adipose tissue, increased adiponectin expression, ameliorated hepatic steatosis, and improved systemic glucose homeostasis and insulin sensitivity. In mice with established obesity, short-term treatment with a pharmacological antagonist of CCR2 lowered macrophage content of adipose tissue and improved insulin sensitivity without significantly altering body mass or improving hepatic steatosis. These data suggest that CCR2 influences the development of obesity and associated adipose tissue inflammation and systemic insulin resistance and plays a role in the maintenance of adipose tissue macrophages and insulin resistance once obesity and its metabolic consequences are established.
Stuart P. Weisberg, Deborah Hunter, Reid Huber, Jacob Lemieux, Sarah Slaymaker, Kris Vaddi, Israel Charo, Rudolph L. Leibel, Anthony W. Ferrante Jr.