Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • Aging (Upcoming)
    • Next-Generation Sequencing in Medicine (Jun 2022)
    • New Therapeutic Targets in Cardiovascular Diseases (Mar 2022)
    • Immunometabolism (Jan 2022)
    • Circadian Rhythm (Oct 2021)
    • Gut-Brain Axis (Jul 2021)
    • Tumor Microenvironment (Mar 2021)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Alerts
  • Advertising
  • Job board
  • Subscribe
  • Contact
STAT3 upregulation in pituitary somatotroph adenomas induces growth hormone hypersecretion
Cuiqi Zhou, … , Kolja Wawrowsky, Shlomo Melmed
Cuiqi Zhou, … , Kolja Wawrowsky, Shlomo Melmed
Published March 16, 2015
Citation Information: J Clin Invest. 2015;125(4):1692-1702. https://doi.org/10.1172/JCI78173.
View: Text | PDF
Research Article Endocrinology

STAT3 upregulation in pituitary somatotroph adenomas induces growth hormone hypersecretion

  • Text
  • PDF
Abstract

Pituitary somatotroph adenomas result in dysregulated growth hormone (GH) hypersecretion and acromegaly; however, regulatory mechanisms that promote GH hypersecretion remain elusive. Here, we provide evidence that STAT3 directly induces somatotroph tumor cell GH. Evaluation of pituitary tumors revealed that STAT3 expression was enhanced in human GH-secreting adenomas compared with that in nonsecreting pituitary tumors. Moreover, STAT3 and GH expression were concordant in a somatotroph adenoma tissue array. Promoter and expression analysis in a GH-secreting rat cell line (GH3) revealed that STAT3 specifically binds the Gh promoter and induces transcription. Stable expression of STAT3 in GH3 cells induced expression of endogenous GH, and expression of a constitutively active STAT3 further enhanced GH production. Conversely, expression of dominant-negative STAT3 abrogated GH expression. In primary human somatotroph adenoma-derived cell cultures, STAT3 suppression with the specific inhibitor S3I-201 attenuated GH transcription and reduced GH secretion in the majority of derivative cultures. In addition, S3I-201 attenuated somatotroph tumor growth and GH secretion in a rat xenograft model. GH induced STAT3 phosphorylation and nuclear translocation, indicating a positive feedback loop between STAT3 and GH in somatotroph tumor cells. Together, these results indicate that adenoma GH hypersecretion is the result of STAT3-dependent GH induction, which in turn promotes STAT3 expression, and suggest STAT3 as a potential therapeutic target for pituitary somatotroph adenomas.

Authors

Cuiqi Zhou, Yonghui Jiao, Renzhi Wang, Song-Guang Ren, Kolja Wawrowsky, Shlomo Melmed

×

Full Text PDF | Download (2.49 MB)


Copyright © 2022 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts