Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Issue published April 1, 2015 Previous issue | Next issue

  • Volume 125, Issue 4
Go to section:
  • Conversations with Giants in Medicine
  • News
  • Reviews
  • Hindsight
  • Commentaries
  • Research Articles
  • Retraction
  • Corrigendum

On the cover: Prothrombotic microparticle gen­eration

The cover image shows inflammasome-dependent translocation of tissue factor (red) onto filopodia (actin, green) following stimulation of PR2X7 in macrophages (nuclei, blue). On page 1471, Rothmeier et al. provide evidence for a caspase-1–dependent pathway that drives the formation of procoagulant microparticles in macrophages.

Conversations with Giants in Medicine
A conversation with Bill Paul
Ushma S. Neill
Ushma S. Neill
Published April 1, 2015
Citation Information: J Clin Invest. 2015;125(4):1367-1368. https://doi.org/10.1172/JCI81730.
View: Text | PDF

A conversation with Bill Paul

  • Text
  • PDF
Abstract

Authors

Ushma S. Neill

×
News
Louis Ptáček receives the 2015 ASCI/Stanley J. Korsmeyer Award
Sarah Jackson
Sarah Jackson
Published April 1, 2015
Citation Information: J Clin Invest. 2015;125(4):1369-1370. https://doi.org/10.1172/JCI81185.
View: Text | PDF

Louis Ptáček receives the 2015 ASCI/Stanley J. Korsmeyer Award

  • Text
  • PDF
Abstract

Authors

Sarah Jackson

×
Reviews
No quiet surrender: molecular guardians in multiple sclerosis brain
Lawrence Steinman
Lawrence Steinman
Published April 1, 2015
Citation Information: J Clin Invest. 2015;125(4):1371-1378. https://doi.org/10.1172/JCI74255.
View: Text | PDF

No quiet surrender: molecular guardians in multiple sclerosis brain

  • Text
  • PDF
Abstract

The brain under immunological attack does not surrender quietly. Investigation of brain lesions in multiple sclerosis (MS) reveals a coordinated molecular response involving various proteins and small molecules ranging from heat shock proteins to small lipids, neurotransmitters, and even gases, which provide protection and foster repair. Reduction of inflammation serves as a necessary prerequisite for effective recovery and regeneration. Remarkably, many lesion-resident molecules activate pathways leading to both suppression of inflammation and promotion of repair mechanisms. These guardian molecules and their corresponding physiologic pathways could potentially be exploited to silence inflammation and repair the injured and degenerating brain and spinal cord in both relapsing-remitting and progressive forms of MS and may be beneficial in other neurologic and psychiatric conditions.

Authors

Lawrence Steinman

×

Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy
Richard L. Proia, Timothy Hla
Richard L. Proia, Timothy Hla
Published April 1, 2015
Citation Information: J Clin Invest. 2015;125(4):1379-1387. https://doi.org/10.1172/JCI76369.
View: Text | PDF

Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy

  • Text
  • PDF
Abstract

Membrane sphingolipids are metabolized to sphingosine-1-phosphate (S1P), a bioactive lipid mediator that regulates many processes in vertebrate development, physiology, and pathology. Once exported out of cells by cell-specific transporters, chaperone-bound S1P is spatially compartmentalized in the circulatory system. Extracellular S1P interacts with five GPCRs that are widely expressed and transduce intracellular signals to regulate cellular behavior, such as migration, adhesion, survival, and proliferation. While many organ systems are affected, S1P signaling is essential for vascular development, neurogenesis, and lymphocyte trafficking. Recently, a pharmacological S1P receptor antagonist has won approval to control autoimmune neuroinflammation in multiple sclerosis. The availability of pharmacological tools as well as mouse genetic models has revealed several physiological actions of S1P and begun to shed light on its pathological roles. The unique mode of signaling of this lysophospholipid mediator is providing novel opportunities for therapeutic intervention, with possibilities to target not only GPCRs but also transporters, metabolic enzymes, and chaperones.

Authors

Richard L. Proia, Timothy Hla

×
Hindsight
Nuclear receptor PXR: discovery of a pharmaceutical anti-target
Steven A. Kliewer
Steven A. Kliewer
Published April 1, 2015
Citation Information: J Clin Invest. 2015;125(4):1388-1389. https://doi.org/10.1172/JCI81244.
View: Text | PDF

Nuclear receptor PXR: discovery of a pharmaceutical anti-target

  • Text
  • PDF
Abstract

Transcriptional induction of the gene encoding cytochrome P450 3A oxygenase (CYP3A) causes a prominent class of dangerous drug-drug interactions wherein one drug accelerates the metabolism of another. In our 1998 JCI paper, we reported the cloning of the human nuclear receptor PXR and demonstrated that it mediates CYP3A induction. We determined that PXR is expressed in liver, acts through a DNA response element located in the CYP3A promoter, and is activated by a structurally diverse collection of drugs that induce CYP3A. Our findings revealed the molecular basis for the CYP3A induction class of drug-drug interactions and provided a high-throughput means for screening out drug candidates with this activity.

Authors

Steven A. Kliewer

×
Commentaries
Exploiting metabolic and antioxidant pathways to maintain vision in blinding disease
Pavitra S. Ramachandran, … , Ji Yun Song, Jean Bennett
Pavitra S. Ramachandran, … , Ji Yun Song, Jean Bennett
Published March 23, 2015
Citation Information: J Clin Invest. 2015;125(4):1390-1392. https://doi.org/10.1172/JCI80821.
View: Text | PDF

Exploiting metabolic and antioxidant pathways to maintain vision in blinding disease

  • Text
  • PDF
Abstract

The use of gene therapy for blinding disease shows growing promise; however, due to an ever-expanding list of disease-causing genes and mutations, the identification of a generic gene-based treatment is urgently needed. In many forms of degenerative retinal disease, there may be a window of opportunity to preserve daylight vision, as the cone photoreceptors degenerate more slowly than do the rods. In this issue of the JCI, Venkatesh et al. and Xiong et al. exploit two different pathways to promote cone cell survival and preserve vision in murine retinal degeneration models. These studies provide hope for developing a universal reagent to treat many different blinding disorders.

Authors

Pavitra S. Ramachandran, Ji Yun Song, Jean Bennett

×

Transcriptional regulation of autophagy in RAS-driven cancers
Ravi K. Amaravadi
Ravi K. Amaravadi
Published March 23, 2015
Citation Information: J Clin Invest. 2015;125(4):1393-1395. https://doi.org/10.1172/JCI81504.
View: Text | PDF

Transcriptional regulation of autophagy in RAS-driven cancers

  • Text
  • PDF
Abstract

RAS-driven cancers exhibit variable dependency on autophagy for survival; however, it is not fully understood how. In this issue of the JCI, Cheong and colleagues demonstrate that RAS-dependent elevation of casein kinase 1α (CK1α) negatively regulates autophagy at the level of autophagy gene transcription. Moreover, combined inhibition of both CK1α and autophagy reduced proliferation of RAS-driven tumors. The results of this study provide insight into the connection between mutant RAS and autophagy, and suggest targeting CK1α as a potential therapeutic strategy to modulate autophagy in RAS-driven cancers.

Authors

Ravi K. Amaravadi

×
Research Articles
Cherubism allele heterozygosity amplifies microbe-induced inflammatory responses in murine macrophages
Virginie Prod’Homme, … , Sophie Tartare-Deckert, Marcel Deckert
Virginie Prod’Homme, … , Sophie Tartare-Deckert, Marcel Deckert
Published February 23, 2015
Citation Information: J Clin Invest. 2015;125(4):1396-1400. https://doi.org/10.1172/JCI71081.
View: Text | PDF Brief Report

Cherubism allele heterozygosity amplifies microbe-induced inflammatory responses in murine macrophages

  • Text
  • PDF
Abstract

Cherubism is a rare autoinflammatory bone disorder that is associated with point mutations in the SH3-domain binding protein 2 (SH3BP2) gene, which encodes the adapter protein 3BP2. Individuals with cherubism present with symmetrical fibro-osseous lesions of the jaw, which are attributed to exacerbated osteoclast activation and defective osteoblast differentiation. Although it is a dominant trait in humans, cherubism appears to be recessively transmitted in mice, suggesting the existence of additional factors in the pathogenesis of cherubism. Here, we report that macrophages from 3BP2-deficient mice exhibited dramatically reduced inflammatory responses to microbial challenge and reduced phagocytosis. 3BP2 was necessary for LPS-induced activation of signaling pathways involved in macrophage function, including SRC, VAV1, p38MAPK, IKKα/β, RAC, and actin polymerization pathways. Conversely, we demonstrated that the presence of a single Sh3bp2 cherubic allele and pathogen-associated molecular pattern (PAMP) stimulation had a strong cooperative effect on macrophage activation and inflammatory responses in mice. Together, the results from our study in murine genetic models support the notion that infection may represent a driver event in the etiology of cherubism in humans and suggest limiting inflammation in affected individuals may reduce manifestation of cherubic lesions.

Authors

Virginie Prod’Homme, Laurent Boyer, Nicholas Dubois, Aude Mallavialle, Patrick Munro, Xavier Mouska, Isabelle Coste, Robert Rottapel, Sophie Tartare-Deckert, Marcel Deckert

×

Casein kinase 1α–dependent feedback loop controls autophagy in RAS-driven cancers
Jit Kong Cheong, … , Andrew Thorburn, David M. Virshup
Jit Kong Cheong, … , Andrew Thorburn, David M. Virshup
Published March 23, 2015
Citation Information: J Clin Invest. 2015;125(4):1401-1418. https://doi.org/10.1172/JCI78018.
View: Text | PDF

Casein kinase 1α–dependent feedback loop controls autophagy in RAS-driven cancers

  • Text
  • PDF
Abstract

Activating mutations in the RAS oncogene are common in cancer but are difficult to therapeutically target. RAS activation promotes autophagy, a highly regulated catabolic process that metabolically buffers cells in response to diverse stresses. Here we report that casein kinase 1α (CK1α), a ubiquitously expressed serine/threonine kinase, is a key negative regulator of oncogenic RAS–induced autophagy. Depletion or pharmacologic inhibition of CK1α enhanced autophagic flux in oncogenic RAS–driven human fibroblasts and multiple cancer cell lines. FOXO3A, a master longevity mediator that transcriptionally regulates diverse autophagy genes, was a critical target of CK1α, as depletion of CK1α reduced levels of phosphorylated FOXO3A and increased expression of FOXO3A-responsive genes. Oncogenic RAS increased CK1α protein abundance via activation of the PI3K/AKT/mTOR pathway. In turn, elevated levels of CK1α increased phosphorylation of nuclear FOXO3A, thereby inhibiting transactivation of genes critical for RAS-induced autophagy. In both RAS-driven cancer cells and murine xenograft models, pharmacologic CK1α inactivation synergized with lysosomotropic agents to inhibit growth and promote tumor cell death. Together, our results identify a kinase feedback loop that influences RAS-dependent autophagy and suggest that targeting CK1α-regulated autophagy offers a potential therapeutic opportunity to treat oncogenic RAS–driven cancers.

Authors

Jit Kong Cheong, Fuquan Zhang, Pei Jou Chua, Boon Huat Bay, Andrew Thorburn, David M. Virshup

×

RASA3 is a critical inhibitor of RAP1-dependent platelet activation
Lucia Stefanini, … , Luanne L. Peters, Wolfgang Bergmeier
Lucia Stefanini, … , Luanne L. Peters, Wolfgang Bergmeier
Published February 23, 2015
Citation Information: J Clin Invest. 2015;125(4):1419-1432. https://doi.org/10.1172/JCI77993.
View: Text | PDF

RASA3 is a critical inhibitor of RAP1-dependent platelet activation

  • Text
  • PDF
Abstract

The small GTPase RAP1 is critical for platelet activation and thrombus formation. RAP1 activity in platelets is controlled by the GEF CalDAG-GEFI and an unknown regulator that operates downstream of the adenosine diphosphate (ADP) receptor, P2Y12, a target of antithrombotic therapy. Here, we provide evidence that the GAP, RASA3, inhibits platelet activation and provides a link between P2Y12 and activation of the RAP1 signaling pathway. In mice, reduced expression of RASA3 led to premature platelet activation and markedly reduced the life span of circulating platelets. The increased platelet turnover and the resulting thrombocytopenia were reversed by concomitant deletion of the gene encoding CalDAG-GEFI. Rasa3 mutant platelets were hyperresponsive to agonist stimulation, both in vitro and in vivo. Moreover, activation of Rasa3 mutant platelets occurred independently of ADP feedback signaling and was insensitive to inhibitors of P2Y12 or PI3 kinase. Together, our results indicate that RASA3 ensures that circulating platelets remain quiescent by restraining CalDAG-GEFI/RAP1 signaling and suggest that P2Y12 signaling is required to inhibit RASA3 and enable sustained RAP1-dependent platelet activation and thrombus formation at sites of vascular injury. These findings provide insight into the antithrombotic effect of P2Y12 inhibitors and may lead to improved diagnosis and treatment of platelet-related disorders.

Authors

Lucia Stefanini, David S. Paul, Raymond F. Robledo, E. Ricky Chan, Todd M. Getz, Robert A. Campbell, Daniel O. Kechele, Caterina Casari, Raymond Piatt, Kathleen M. Caron, Nigel Mackman, Andrew S. Weyrich, Matthew C. Parrott, Yacine Boulaftali, Mark D. Adams, Luanne L. Peters, Wolfgang Bergmeier

×

NRF2 promotes neuronal survival in neurodegeneration and acute nerve damage
Wenjun Xiong, … , Larry I. Benowitz, Constance L. Cepko
Wenjun Xiong, … , Larry I. Benowitz, Constance L. Cepko
Published March 23, 2015
Citation Information: J Clin Invest. 2015;125(4):1433-1445. https://doi.org/10.1172/JCI79735.
View: Text | PDF

NRF2 promotes neuronal survival in neurodegeneration and acute nerve damage

  • Text
  • PDF
Abstract

Oxidative stress contributes to the loss of neurons in many disease conditions as well as during normal aging; however, small-molecule agents that reduce oxidation have not been successful in preventing neurodegeneration. Moreover, even if an efficacious systemic reduction of reactive oxygen and/or nitrogen species (ROS/NOS) could be achieved, detrimental side effects are likely, as these molecules regulate normal physiological processes. A more effective and targeted approach might be to augment the endogenous antioxidant defense mechanism only in the cells that suffer from oxidation. Here, we created several adeno-associated virus (AAV) vectors to deliver genes that combat oxidation. These vectors encode the transcription factors NRF2 and/or PGC1a, which regulate hundreds of genes that combat oxidation and other forms of stress, or enzymes such as superoxide dismutase 2 (SOD2) and catalase, which directly detoxify ROS. We tested the effectiveness of this approach in 3 models of photoreceptor degeneration and in a nerve crush model. AAV-mediated delivery of NRF2 was more effective than SOD2 and catalase, while expression of PGC1a accelerated photoreceptor death. Since the NRF2-mediated neuroprotective effects extended to photoreceptors and retinal ganglion cells, which are 2 very different types of neurons, these results suggest that this targeted approach may be broadly applicable to many diseases in which cells suffer from oxidative damage.

Authors

Wenjun Xiong, Alexandra E. MacColl Garfinkel, Yiqing Li, Larry I. Benowitz, Constance L. Cepko

×

Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice
Aditya Venkatesh, … , Markus A. Rüegg, Claudio Punzo
Aditya Venkatesh, … , Markus A. Rüegg, Claudio Punzo
Published March 23, 2015
Citation Information: J Clin Invest. 2015;125(4):1446-1458. https://doi.org/10.1172/JCI79766.
View: Text | PDF

Activated mTORC1 promotes long-term cone survival in retinitis pigmentosa mice

  • Text
  • PDF
Abstract

Retinitis pigmentosa (RP) is an inherited photoreceptor degenerative disorder that results in blindness. The disease is often caused by mutations in genes that are specific to rod photoreceptors; however, blindness results from the secondary loss of cones by a still unknown mechanism. Here, we demonstrated that the mammalian target of rapamycin complex 1 (mTORC1) is required to slow the progression of cone death during disease and that constitutive activation of mTORC1 in cones is sufficient to maintain cone function and promote long-term cone survival. Activation of mTORC1 in cones enhanced glucose uptake, retention, and utilization, leading to increased levels of the key metabolite NADPH. Moreover, cone death was delayed in the absence of the NADPH-sensitive cell death protease caspase 2, supporting the contribution of reduced NADPH in promoting cone death. Constitutive activation of mTORC1 preserved cones in 2 mouse models of RP, suggesting that the secondary loss of cones is caused mainly by metabolic deficits and is independent of a specific rod-associated mutation. Together, the results of this study address a longstanding question in the field and suggest that activating mTORC1 in cones has therapeutic potential to prolong vision in RP.

Authors

Aditya Venkatesh, Shan Ma, Yun Z. Le, Michael N. Hall, Markus A. Rüegg, Claudio Punzo

×

Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma
Lawrence N. Kwong, … , Jennifer A. Wargo, Lynda Chin
Lawrence N. Kwong, … , Jennifer A. Wargo, Lynda Chin
Published February 23, 2015
Citation Information: J Clin Invest. 2015;125(4):1459-1470. https://doi.org/10.1172/JCI78954.
View: Text | PDF

Co-clinical assessment identifies patterns of BRAF inhibitor resistance in melanoma

  • Text
  • PDF
Abstract

Multiple mechanisms have been described that confer BRAF inhibitor resistance to melanomas, yet the basis of this resistance remains undefined in a sizable portion of patient samples. Here, we characterized samples from a set of patients with melanoma that included individuals at baseline diagnosis, on BRAF inhibitor treatment, and with resistant tumors at both the protein and RNA levels. Using RNA and DNA sequencing, we identified known resistance-conferring mutations in 50% (6 of 12) of the resistant samples. In parallel, targeted proteomic analysis by protein array categorized the resistant samples into 3 stable groups, 2 of which were characterized by reactivation of MAPK signaling to different levels and 1 that was MAPK independent. The molecular relevance of these classifications identified in patients was supported by both mutation data and the similarity of resistance patterns that emerged during a co-clinical trial in a genetically engineered mouse (GEM) model of melanoma that recapitulates the development of BRAF inhibitor resistance. Additionally, we defined candidate biomarkers in pre- and early-treatment patient samples that have potential for predicting clinical responses. On the basis of these observations, we suggest that BRAF inhibitor–resistant melanomas can be actionably classified using protein expression patterns, even without identification of the underlying genetic alteration.

Authors

Lawrence N. Kwong, Genevieve M. Boland, Dennie T. Frederick, Timothy L. Helms, Ahmad T. Akid, John P. Miller, Shan Jiang, Zachary A. Cooper, Xingzhi Song, Sahil Seth, Jennifer Kamara, Alexei Protopopov, Gordon B. Mills, Keith T. Flaherty, Jennifer A. Wargo, Lynda Chin

×

Caspase-1–mediated pathway promotes generation of thromboinflammatory microparticles
Andrea S. Rothmeier, … , Zaverio M. Ruggeri, Wolfram Ruf
Andrea S. Rothmeier, … , Zaverio M. Ruggeri, Wolfram Ruf
Published February 23, 2015
Citation Information: J Clin Invest. 2015;125(4):1471-1484. https://doi.org/10.1172/JCI79329.
View: Text | PDF

Caspase-1–mediated pathway promotes generation of thromboinflammatory microparticles

  • Text
  • PDF
Abstract

Extracellular ATP is a signal of tissue damage and induces macrophage responses that amplify inflammation and coagulation. Here we demonstrate that ATP signaling through macrophage P2X7 receptors uncouples the thioredoxin (TRX)/TRX reductase (TRXR) system and activates the inflammasome through endosome-generated ROS. TRXR and inflammasome activity promoted filopodia formation, cellular release of reduced TRX, and generation of extracellular thiol pathway–dependent, procoagulant microparticles (MPs). Additionally, inflammasome-induced activation of an intracellular caspase-1/calpain cysteine protease cascade degraded filamin, thereby severing bonds between the cytoskeleton and tissue factor (TF), the cell surface receptor responsible for coagulation activation. This cascade enabled TF trafficking from rafts to filopodia and ultimately onto phosphatidylserine-positive, highly procoagulant MPs. Furthermore, caspase-1 specifically facilitated cell surface actin exposure, which was required for the final release of highly procoagulant MPs from filopodia. Together, the results of this study delineate a thromboinflammatory pathway and suggest that components of this pathway have potential as pharmacological targets to simultaneously attenuate inflammation and innate immune cell–induced thrombosis.

Authors

Andrea S. Rothmeier, Patrizia Marchese, Brian G. Petrich, Christian Furlan-Freguia, Mark H. Ginsberg, Zaverio M. Ruggeri, Wolfram Ruf

×

Human prion protein sequence elements impede cross-species chronic wasting disease transmission
Timothy D. Kurt, … , Qingzhong Kong, Christina J. Sigurdson
Timothy D. Kurt, … , Qingzhong Kong, Christina J. Sigurdson
Published February 23, 2015
Citation Information: J Clin Invest. 2015;125(4):1485-1496. https://doi.org/10.1172/JCI79408.
View: Text | PDF | Erratum

Human prion protein sequence elements impede cross-species chronic wasting disease transmission

  • Text
  • PDF
Abstract

Chronic wasting disease (CWD) is a fatal prion disease of North American deer and elk and poses an unclear risk for transmission to humans. Human exposure to CWD occurs through hunting activities and consumption of venison from prion-infected animals. Although the amino acid residues of the prion protein (PrP) that prevent or permit human CWD infection are unknown, NMR-based structural studies suggest that the β2-α2 loop (residues 165–175) may impact species barriers. Here we sought to define PrP sequence determinants that affect CWD transmission to humans. We engineered transgenic mice that express human PrP with four amino acid substitutions that result in expression of PrP with a β2-α2 loop (residues 165–175) that exactly matches that of elk PrP. Compared with transgenic mice expressing unaltered human PrP, mice expressing the human-elk chimeric PrP were highly susceptible to elk and deer CWD prions but were concurrently less susceptible to human Creutzfeldt-Jakob disease prions. A systematic in vitro survey of amino acid differences between humans and cervids identified two additional residues that impacted CWD conversion of human PrP. This work identifies amino acids that constitute a substantial structural barrier for CWD transmission to humans and helps illuminate the molecular requirements for cross-species prion transmission.

Authors

Timothy D. Kurt, Lin Jiang, Natalia Fernández-Borges, Cyrus Bett, Jun Liu, Tom Yang, Terry R. Spraker, Joaquín Castilla, David Eisenberg, Qingzhong Kong, Christina J. Sigurdson

×

BAI1 regulates spatial learning and synaptic plasticity in the hippocampus
Dan Zhu, … , Donald G. Rainnie, Erwin G. Van Meir
Dan Zhu, … , Donald G. Rainnie, Erwin G. Van Meir
Published March 9, 2015
Citation Information: J Clin Invest. 2015;125(4):1497-1508. https://doi.org/10.1172/JCI74603.
View: Text | PDF

BAI1 regulates spatial learning and synaptic plasticity in the hippocampus

  • Text
  • PDF
Abstract

Synaptic plasticity is the ability of synapses to modulate the strength of neuronal connections; however, the molecular factors that regulate this feature are incompletely understood. Here, we demonstrated that mice lacking brain-specific angiogenesis inhibitor 1 (BAI1) have severe deficits in hippocampus-dependent spatial learning and memory that are accompanied by enhanced long-term potentiation (LTP), impaired long-term depression (LTD), and a thinning of the postsynaptic density (PSD) at hippocampal synapses. We showed that compared with WT animals, mice lacking Bai1 exhibit reduced protein levels of the canonical PSD component PSD-95 in the brain, which stems from protein destabilization. We determined that BAI1 prevents PSD-95 polyubiquitination and degradation through an interaction with murine double minute 2 (MDM2), the E3 ubiquitin ligase that regulates PSD-95 stability. Restoration of PSD-95 expression in hippocampal neurons in BAI1-deficient mice by viral gene therapy was sufficient to compensate for Bai1 loss and rescued deficits in synaptic plasticity. Together, our results reveal that interaction of BAI1 with MDM2 in the brain modulates PSD-95 levels and thereby regulates synaptic plasticity. Moreover, these results suggest that targeting this pathway has therapeutic potential for a variety of neurological disorders.

Authors

Dan Zhu, Chenchen Li, Andrew M. Swanson, Rosa M. Villalba, Jidong Guo, Zhaobin Zhang, Shannon Matheny, Tatsuro Murakami, Jason R. Stephenson, Sarah Daniel, Masaki Fukata, Randy A. Hall, Jeffrey J. Olson, Gretchen N. Neigh, Yoland Smith, Donald G. Rainnie, Erwin G. Van Meir

×

MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation
Chang-Jun Li, … , Er-Yuan Liao, Xiang-Hang Luo
Chang-Jun Li, … , Er-Yuan Liao, Xiang-Hang Luo
Published March 9, 2015
Citation Information: J Clin Invest. 2015;125(4):1509-1522. https://doi.org/10.1172/JCI77716.
View: Text | PDF

MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation

  • Text
  • PDF
Abstract

Bone marrow mesenchymal stem cells (BMSCs) exhibit an age-dependent reduction in osteogenesis that is accompanied by an increased propensity toward adipocyte differentiation. This switch increases adipocyte numbers and decreases the number of osteoblasts, contributing to age-related bone loss. Here, we found that the level of microRNA-188 (miR-188) is markedly higher in BMSCs from aged compared with young mice and humans. Compared with control mice, animals lacking miR-188 showed a substantial reduction of age-associated bone loss and fat accumulation in bone marrow. Conversely, mice with transgenic overexpression of miR-188 in osterix+ osteoprogenitors had greater age-associated bone loss and fat accumulation in bone marrow relative to WT mice. Moreover, using an aptamer delivery system, we found that BMSC-specific overexpression of miR-188 in mice reduced bone formation and increased bone marrow fat accumulation. We identified histone deacetylase 9 (HDAC9) and RPTOR-independent companion of MTOR complex 2 (RICTOR) as the direct targets of miR-188. Notably, BMSC-specific inhibition of miR-188 by intra–bone marrow injection of aptamer-antagomiR-188 increased bone formation and decreased bone marrow fat accumulation in aged mice. Together, our results indicate that miR-188 is a key regulator of the age-related switch between osteogenesis and adipogenesis of BMSCs and may represent a potential therapeutic target for age-related bone loss.

Authors

Chang-Jun Li, Peng Cheng, Meng-Ke Liang, Yu-Si Chen, Qiong Lu, Jin-Yu Wang, Zhu-Ying Xia, Hou-De Zhou, Xu Cao, Hui Xie, Er-Yuan Liao, Xiang-Hang Luo

×

RNF4-mediated polyubiquitination regulates the Fanconi anemia/BRCA pathway
Jenny Xie, … , Shunichi Takeda, Alan D. D’Andrea
Jenny Xie, … , Shunichi Takeda, Alan D. D’Andrea
Published March 9, 2015
Citation Information: J Clin Invest. 2015;125(4):1523-1532. https://doi.org/10.1172/JCI79325.
View: Text | PDF

RNF4-mediated polyubiquitination regulates the Fanconi anemia/BRCA pathway

  • Text
  • PDF
Abstract

The Fanconi anemia/BRCA (FA/BRCA) pathway is a DNA repair pathway that is required for excision of DNA interstrand cross-links. The 17 known FA proteins, along with several FA-associated proteins (FAAPs), cooperate in this pathway to detect, unhook, and excise DNA cross-links and to subsequently repair the double-strand breaks generated in the process. In the current study, we identified a patient with FA with a point mutation in FANCA, which encodes a mutant FANCA protein (FANCAI939S). FANCAI939S failed to bind to the FAAP20 subunit of the FA core complex, leading to decreased stability. Loss of FAAP20 binding exposed a SUMOylation site on FANCA at amino acid residue K921, resulting in E2 SUMO-conjugating enzyme UBC9-mediated SUMOylation, RING finger protein 4–mediated (RNF4-mediated) polyubiquitination, and proteasome-mediated degradation of FANCA. Mutation of the SUMOylation site of FANCA rescued the expression of the mutant protein. Wild-type FANCA was also subject to SUMOylation, RNF4-mediated polyubiquitination, and degradation, suggesting that regulated release of FAAP20 from FANCA is a critical step in the normal FA pathway. Consistent with this model, cells lacking RNF4 exhibited interstrand cross-linker hypersensitivity, and the gene encoding RNF4 was epistatic with the other genes encoding members of the FA/BRCA pathway. Together, the results from our study underscore the importance of analyzing unique patient-derived mutations for dissecting complex DNA repair processes.

Authors

Jenny Xie, Hyungjin Kim, Lisa A. Moreau, Shannon Puhalla, Judy Garber, Muthana Al Abo, Shunichi Takeda, Alan D. D’Andrea

×

Resetting the transcription factor network reverses terminal chronic hepatic failure
Taichiro Nishikawa, … , Alejandro Soto-Gutierrez, Ira J. Fox
Taichiro Nishikawa, … , Alejandro Soto-Gutierrez, Ira J. Fox
Published March 16, 2015
Citation Information: J Clin Invest. 2015;125(4):1533-1544. https://doi.org/10.1172/JCI73137.
View: Text | PDF

Resetting the transcription factor network reverses terminal chronic hepatic failure

  • Text
  • PDF
Abstract

The cause of organ failure is enigmatic for many degenerative diseases, including end-stage liver disease. Here, using a CCl4-induced rat model of irreversible and fatal hepatic failure, which also exhibits terminal changes in the extracellular matrix, we demonstrated that chronic injury stably reprograms the critical balance of transcription factors and that diseased and dedifferentiated cells can be returned to normal function by re-expression of critical transcription factors, a process similar to the type of reprogramming that induces somatic cells to become pluripotent or to change their cell lineage. Forced re-expression of the transcription factor HNF4α induced expression of the other hepatocyte-expressed transcription factors; restored functionality in terminally diseased hepatocytes isolated from CCl4-treated rats; and rapidly reversed fatal liver failure in CCl4-treated animals by restoring diseased hepatocytes rather than replacing them with new hepatocytes or stem cells. Together, the results of our study indicate that disruption of the transcription factor network and cellular dedifferentiation likely mediate terminal liver failure and suggest reinstatement of this network has therapeutic potential for correcting organ failure without cell replacement.

Authors

Taichiro Nishikawa, Aaron Bell, Jenna M. Brooks, Kentaro Setoyama, Marta Melis, Bing Han, Ken Fukumitsu, Kan Handa, Jianmin Tian, Klaus H. Kaestner, Yoram Vodovotz, Joseph Locker, Alejandro Soto-Gutierrez, Ira J. Fox

×

Maternal anti-platelet β3 integrins impair angiogenesis and cause intracranial hemorrhage
Issaka Yougbaré, … , John Freedman, Heyu Ni
Issaka Yougbaré, … , John Freedman, Heyu Ni
Published March 16, 2015
Citation Information: J Clin Invest. 2015;125(4):1545-1556. https://doi.org/10.1172/JCI77820.
View: Text | PDF

Maternal anti-platelet β3 integrins impair angiogenesis and cause intracranial hemorrhage

  • Text
  • PDF
Abstract

Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is a life-threatening disease in which intracranial hemorrhage (ICH) is the major risk. Although thrombocytopenia, which is caused by maternal antibodies against β3 integrin and occasionally by maternal antibodies against other platelet antigens, such as glycoprotein GPIbα, has long been assumed to be the cause of bleeding, the mechanism of ICH has not been adequately explored. Utilizing murine models of FNAIT and a high-frequency ultrasound imaging system, we found that ICH only occurred in fetuses and neonates with anti–β3 integrin–mediated, but not anti-GPIbα–mediated, FNAIT, despite similar thrombocytopenia in both groups. Only anti–β3 integrin–mediated FNAIT reduced brain and retina vessel density, impaired angiogenic signaling, and increased endothelial cell apoptosis, all of which were abrogated by maternal administration of intravenous immunoglobulin (IVIG). ICH and impairment of retinal angiogenesis were further reproduced in neonates by injection of anti–β3 integrin, but not anti-GPIbα antisera. Utilizing cultured human endothelial cells, we found that cell proliferation, network formation, and AKT phosphorylation were inhibited only by murine anti–β3 integrin antisera and human anti–HPA-1a IgG purified from mothers with FNAIT children. Our data suggest that fetal hemostasis is distinct and that impairment of angiogenesis rather than thrombocytopenia likely causes FNAIT-associated ICH. Additionally, our results indicate that maternal IVIG therapy can effectively prevent this devastating disorder.

Authors

Issaka Yougbaré, Sean Lang, Hong Yang, Pingguo Chen, Xu Zhao, Wei-She Tai, Darko Zdravic, Brian Vadasz, Conglei Li, Siavash Piran, Alexandra Marshall, Guangheng Zhu, Heidi Tiller, Mette Kjaer Killie, Shelley Boyd, Howard Leong-Poi, Xiao-Yan Wen, Bjorn Skogen, S. Lee Adamson, John Freedman, Heyu Ni

×

BMP-driven NRF2 activation in esophageal basal cell differentiation and eosinophilic esophagitis
Ming Jiang, … , Xiaopeng Lan, Jianwen Que
Ming Jiang, … , Xiaopeng Lan, Jianwen Que
Published March 16, 2015
Citation Information: J Clin Invest. 2015;125(4):1557-1568. https://doi.org/10.1172/JCI78850.
View: Text | PDF

BMP-driven NRF2 activation in esophageal basal cell differentiation and eosinophilic esophagitis

  • Text
  • PDF
Abstract

Tissue homeostasis requires balanced self-renewal and differentiation of stem/progenitor cells, especially in tissues that are constantly replenished like the esophagus. Disruption of this balance is associated with pathological conditions, including eosinophilic esophagitis (EoE), in which basal progenitor cells become hyperplastic upon proinflammatory stimulation. However, how basal cells respond to the inflammatory environment at the molecular level remains undetermined. We previously reported that the bone morphogenetic protein (BMP) signaling pathway is critical for epithelial morphogenesis in the embryonic esophagus. Here, we address how this pathway regulates tissue homeostasis and EoE development in the adult esophagus. BMP signaling was specifically activated in differentiated squamous epithelium, but not in basal progenitor cells, which express the BMP antagonist follistatin. Previous reports indicate that increased BMP activity promotes Barrett’s intestinal differentiation; however, in mice, basal progenitor cell–specific expression of constitutively active BMP promoted squamous differentiation. Moreover, BMP activation increased intracellular ROS levels, initiating an NRF2-mediated oxidative response during basal progenitor cell differentiation. In both a mouse EoE model and human biopsies, reduced squamous differentiation was associated with high levels of follistatin and disrupted BMP/NRF2 pathways. We therefore propose a model in which normal squamous differentiation of basal progenitor cells is mediated by BMP-driven NRF2 activation and basal cell hyperplasia is promoted by disruption of BMP signaling in EoE.

Authors

Ming Jiang, Wei-Yao Ku, Zhongren Zhou, Evan S. Dellon, Gary W. Falk, Hiroshi Nakagawa, Mei-Lun Wang, Kuancan Liu, Jun Wang, David A. Katzka, Jeffrey H. Peters, Xiaopeng Lan, Jianwen Que

×

Severe myopathy in mice lacking the MEF2/SRF-dependent gene leiomodin-3
Bercin K. Cenik, … , Eric N. Olson, Ning Liu
Bercin K. Cenik, … , Eric N. Olson, Ning Liu
Published March 16, 2015
Citation Information: J Clin Invest. 2015;125(4):1569-1578. https://doi.org/10.1172/JCI80115.
View: Text | PDF

Severe myopathy in mice lacking the MEF2/SRF-dependent gene leiomodin-3

  • Text
  • PDF
Abstract

Maintenance of skeletal muscle structure and function requires a precise stoichiometry of sarcomeric proteins for proper assembly of the contractile apparatus. Absence of components of the sarcomeric thin filaments causes nemaline myopathy, a lethal congenital muscle disorder associated with aberrant myofiber structure and contractility. Previously, we reported that deficiency of the kelch-like family member 40 (KLHL40) in mice results in nemaline myopathy and destabilization of leiomodin-3 (LMOD3). LMOD3 belongs to a family of tropomodulin-related proteins that promote actin nucleation. Here, we show that deficiency of LMOD3 in mice causes nemaline myopathy. In skeletal muscle, transcription of Lmod3 was controlled by the transcription factors SRF and MEF2. Myocardin-related transcription factors (MRTFs), which function as SRF coactivators, serve as sensors of actin polymerization and are sequestered in the cytoplasm by actin monomers. Conversely, conditions that favor actin polymerization de-repress MRTFs and activate SRF-dependent genes. We demonstrated that the actin nucleator LMOD3, together with its stabilizing partner KLHL40, enhances MRTF-SRF activity. In turn, SRF cooperated with MEF2 to sustain the expression of LMOD3 and other components of the contractile apparatus, thereby establishing a regulatory circuit to maintain skeletal muscle function. These findings provide insight into the molecular basis of the sarcomere assembly and muscle dysfunction associated with nemaline myopathy.

Authors

Bercin K. Cenik, Ankit Garg, John R. McAnally, John M. Shelton, James A. Richardson, Rhonda Bassel-Duby, Eric N. Olson, Ning Liu

×

NOTCH reprograms mitochondrial metabolism for proinflammatory macrophage activation
Jun Xu, … , Samuel W. French, Hidekazu Tsukamoto
Jun Xu, … , Samuel W. French, Hidekazu Tsukamoto
Published March 23, 2015
Citation Information: J Clin Invest. 2015;125(4):1579-1590. https://doi.org/10.1172/JCI76468.
View: Text | PDF

NOTCH reprograms mitochondrial metabolism for proinflammatory macrophage activation

  • Text
  • PDF
Abstract

Metabolic reprogramming is implicated in macrophage activation, but the underlying mechanisms are poorly understood. Here, we demonstrate that the NOTCH1 pathway dictates activation of M1 phenotypes in isolated mouse hepatic macrophages (HMacs) and in a murine macrophage cell line by coupling transcriptional upregulation of M1 genes with metabolic upregulation of mitochondrial oxidative phosphorylation and ROS (mtROS) to augment induction of M1 genes. Enhanced mitochondrial glucose oxidation was achieved by increased recruitment of the NOTCH1 intracellular domain (NICD1) to nuclear and mitochondrial genes that encode respiratory chain components and by NOTCH-dependent induction of pyruvate dehydrogenase phosphatase 1 (Pdp1) expression, pyruvate dehydrogenase activity, and glucose flux to the TCA cycle. As such, inhibition of the NOTCH pathway or Pdp1 knockdown abrogated glucose oxidation, mtROS, and M1 gene expression. Conditional NOTCH1 deficiency in the myeloid lineage attenuated HMac M1 activation and inflammation in a murine model of alcoholic steatohepatitis and markedly reduced lethality following endotoxin-mediated fulminant hepatitis in mice. In vivo monocyte tracking further demonstrated the requirement of NOTCH1 for the migration of blood monocytes into the liver and subsequent M1 differentiation. Together, these results reveal that NOTCH1 promotes reprogramming of mitochondrial metabolism for M1 macrophage activation.

Authors

Jun Xu, Feng Chi, Tongsheng Guo, Vasu Punj, W.N. Paul Lee, Samuel W. French, Hidekazu Tsukamoto

×

Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment
Kazuhiro Tanaka, … , Paul S. Mischel, Eiji Kohmura
Kazuhiro Tanaka, … , Paul S. Mischel, Eiji Kohmura
Published March 23, 2015
Citation Information: J Clin Invest. 2015;125(4):1591-1602. https://doi.org/10.1172/JCI78239.
View: Text | PDF

Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment

  • Text
  • PDF
Abstract

The mechanistic target of rapamycin (mTOR) is hyperactivated in many types of cancer, rendering it a compelling drug target; however, the impact of mTOR inhibition on metabolic reprogramming in cancer is incompletely understood. Here, by integrating metabolic and functional studies in glioblastoma multiforme (GBM) cell lines, preclinical models, and clinical samples, we demonstrate that the compensatory upregulation of glutamine metabolism promotes resistance to mTOR kinase inhibitors. Metabolomic studies in GBM cells revealed that glutaminase (GLS) and glutamate levels are elevated following mTOR kinase inhibitor treatment. Moreover, these mTOR inhibitor–dependent metabolic alterations were confirmed in a GBM xenograft model. Expression of GLS following mTOR inhibitor treatment promoted GBM survival in an α-ketoglutarate–dependent (αKG-dependent) manner. Combined genetic and/or pharmacological inhibition of mTOR kinase and GLS resulted in massive synergistic tumor cell death and growth inhibition in tumor-bearing mice. These results highlight a critical role for compensatory glutamine metabolism in promoting mTOR inhibitor resistance and suggest that rational combination therapy has the potential to suppress resistance.

Authors

Kazuhiro Tanaka, Takashi Sasayama, Yasuhiro Irino, Kumi Takata, Hiroaki Nagashima, Naoko Satoh, Katsusuke Kyotani, Takashi Mizowaki, Taichiro Imahori, Yasuo Ejima, Kenta Masui, Beatrice Gini, Huijun Yang, Kohkichi Hosoda, Ryohei Sasaki, Paul S. Mischel, Eiji Kohmura

×

A versatile modular vector system for rapid combinatorial mammalian genetics
Joachim Albers, … , Peter J. Wild, Ian J. Frew
Joachim Albers, … , Peter J. Wild, Ian J. Frew
Published March 9, 2015
Citation Information: J Clin Invest. 2015;125(4):1603-1619. https://doi.org/10.1172/JCI79743.
View: Text | PDF Technical Advance

A versatile modular vector system for rapid combinatorial mammalian genetics

  • Text
  • PDF
Abstract

Here, we describe the multiple lentiviral expression (MuLE) system that allows multiple genetic alterations to be introduced simultaneously into mammalian cells. We created a toolbox of MuLE vectors that constitute a flexible, modular system for the rapid engineering of complex polycistronic lentiviruses, allowing combinatorial gene overexpression, gene knockdown, Cre-mediated gene deletion, or CRISPR/Cas9-mediated (where CRISPR indicates clustered regularly interspaced short palindromic repeats) gene mutation, together with expression of fluorescent or enzymatic reporters for cellular assays and animal imaging. Examples of tumor engineering were used to illustrate the speed and versatility of performing combinatorial genetics using the MuLE system. By transducing cultured primary mouse cells with single MuLE lentiviruses, we engineered tumors containing up to 5 different genetic alterations, identified genetic dependencies of molecularly defined tumors, conducted genetic interaction screens, and induced the simultaneous CRISPR/Cas9-mediated knockout of 3 tumor-suppressor genes. Intramuscular injection of MuLE viruses expressing oncogenic H-RasG12V together with combinations of knockdowns of the tumor suppressors cyclin-dependent kinase inhibitor 2A (Cdkn2a), transformation-related protein 53 (Trp53), and phosphatase and tensin homolog (Pten) allowed the generation of 3 murine sarcoma models, demonstrating that genetically defined autochthonous tumors can be rapidly generated and quantitatively monitored via direct injection of polycistronic MuLE lentiviruses into mouse tissues. Together, our results demonstrate that the MuLE system provides genetic power for the systematic investigation of the molecular mechanisms that underlie human diseases.

Authors

Joachim Albers, Claudia Danzer, Markus Rechsteiner, Holger Lehmann, Laura P. Brandt, Tomas Hejhal, Antonella Catalano, Philipp Busenhart, Ana Filipa Gonçalves, Simone Brandt, Peter K. Bode, Beata Bode-Lesniewska, Peter J. Wild, Ian J. Frew

×

KIM-1–mediated phagocytosis reduces acute injury to the kidney
Li Yang, … , Vijay Kuchroo, Joseph V. Bonventre
Li Yang, … , Vijay Kuchroo, Joseph V. Bonventre
Published March 9, 2015
Citation Information: J Clin Invest. 2015;125(4):1620-1636. https://doi.org/10.1172/JCI75417.
View: Text | PDF

KIM-1–mediated phagocytosis reduces acute injury to the kidney

  • Text
  • PDF
Abstract

Kidney injury molecule 1 (KIM-1, also known as TIM-1) is markedly upregulated in the proximal tubule after injury and is maladaptive when chronically expressed. Here, we determined that early in the injury process, however, KIM-1 expression is antiinflammatory due to its mediation of phagocytic processes in tubule cells. Using various models of acute kidney injury (AKI) and mice expressing mutant forms of KIM-1, we demonstrated a mucin domain–dependent protective effect of epithelial KIM-1 expression that involves downregulation of innate immunity. Deletion of the mucin domain markedly impaired KIM-1–mediated phagocytic function, resulting in increased proinflammatory cytokine production, decreased antiinflammatory growth factor secretion by proximal epithelial cells, and a subsequent increase in tissue macrophages. Mice expressing KIM-1Δmucin had greater functional impairment, inflammatory responses, and mortality in response to ischemia- and cisplatin-induced AKI. Compared with primary renal proximal tubule cells isolated from KIM-1Δmucin mice, those from WT mice had reduced proinflammatory cytokine secretion and impaired macrophage activation. The antiinflammatory effect of KIM-1 expression was due to the interaction of KIM-1 with p85 and subsequent PI3K-dependent downmodulation of NF-κB. Hence, KIM-1–mediated epithelial cell phagocytosis of apoptotic cells protects the kidney after acute injury by downregulating innate immunity and inflammation.

Authors

Li Yang, Craig R. Brooks, Sheng Xiao, Venkata Sabbisetti, Melissa Y. Yeung, Li-Li Hsiao, Takaharu Ichimura, Vijay Kuchroo, Joseph V. Bonventre

×

Palivizumab epitope–displaying virus-like particles protect rodents from RSV challenge
Jeanne H. Schickli, … , Gary Van Nest, David R. Milich
Jeanne H. Schickli, … , Gary Van Nest, David R. Milich
Published March 9, 2015
Citation Information: J Clin Invest. 2015;125(4):1637-1647. https://doi.org/10.1172/JCI78450.
View: Text | PDF Technical Advance

Palivizumab epitope–displaying virus-like particles protect rodents from RSV challenge

  • Text
  • PDF
Abstract

Respiratory syncytial virus (RSV) is the most common cause of serious viral bronchiolitis in infants, young children, and the elderly. Currently, there is not an FDA-approved vaccine available for RSV, though the mAb palivizumab is licensed to reduce the incidence of RSV disease in premature or at-risk infants. The palivizumab epitope is a well-characterized, approximately 24-aa helix-loop-helix structure on the RSV fusion (F) protein (F254–277). Here, we genetically inserted this epitope and multiple site variants of this epitope within a versatile woodchuck hepadnavirus core–based virus-like particle (WHcAg-VLP) to generate hybrid VLPs that each bears 240 copies of the RSV epitope in a highly immunogenic arrayed format. A challenge of such an epitope-focused approach is that to be effective, the conformational F254–277 epitope must elicit antibodies that recognize the intact virus. A number of hybrid VLPs containing RSV F254–277 were recognized by palivizumab in vitro and elicited high-titer and protective neutralizing antibody in rodents. Together, the results from this proof-of-principle study suggest that the WHcAg-VLP technology may be an applicable approach to eliciting a response to other structural epitopes.

Authors

Jeanne H. Schickli, David C. Whitacre, Roderick S. Tang, Jasmine Kaur, Heather Lawlor, Cory J. Peters, Joyce E. Jones, Darrell L. Peterson, Michael P. McCarthy, Gary Van Nest, David R. Milich

×

Tumor cell migration screen identifies SRPK1 as breast cancer metastasis determinant
Wies van Roosmalen, … , Benjamin Geiger, Bob van de Water
Wies van Roosmalen, … , Benjamin Geiger, Bob van de Water
Published March 16, 2015
Citation Information: J Clin Invest. 2015;125(4):1648-1664. https://doi.org/10.1172/JCI74440.
View: Text | PDF

Tumor cell migration screen identifies SRPK1 as breast cancer metastasis determinant

  • Text
  • PDF
Abstract

Tumor cell migration is a key process for cancer cell dissemination and metastasis that is controlled by signal-mediated cytoskeletal and cell matrix adhesion remodeling. Using a phagokinetic track assay with migratory H1299 cells, we performed an siRNA screen of almost 1,500 genes encoding kinases/phosphatases and adhesome- and migration-related proteins to identify genes that affect tumor cell migration speed and persistence. Thirty candidate genes that altered cell migration were validated in live tumor cell migration assays. Eight were associated with metastasis-free survival in breast cancer patients, with integrin β3–binding protein (ITGB3BP), MAP3K8, NIMA-related kinase (NEK2), and SHC-transforming protein 1 (SHC1) being the most predictive. Examination of genes that modulate migration indicated that SRPK1, encoding the splicing factor kinase SRSF protein kinase 1, is relevant to breast cancer outcomes, as it was highly expressed in basal breast cancer. Furthermore, high SRPK1 expression correlated with poor breast cancer disease outcome and preferential metastasis to the lungs and brain. In 2 independent murine models of breast tumor metastasis, stable shRNA-based SRPK1 knockdown suppressed metastasis to distant organs, including lung, liver, and spleen, and inhibited focal adhesion reorganization. Our study provides comprehensive information on the molecular determinants of tumor cell migration and suggests that SRPK1 has potential as a drug target for limiting breast cancer metastasis.

Authors

Wies van Roosmalen, Sylvia E. Le Dévédec, Ofra Golani, Marcel Smid, Irina Pulyakhina, Annemieke M. Timmermans, Maxime P. Look, Di Zi, Chantal Pont, Marjo de Graauw, Suha Naffar-Abu-Amara, Catherine Kirsanova, Gabriella Rustici, Peter A.C. ‘t Hoen, John W.M. Martens, John A. Foekens, Benjamin Geiger, Bob van de Water

×

X-linked macrocytic dyserythropoietic anemia in females with an ALAS2 mutation
Vijay G. Sankaran, … , David F. Bishop, David P. Steensma
Vijay G. Sankaran, … , David F. Bishop, David P. Steensma
Published February 23, 2015
Citation Information: J Clin Invest. 2015;125(4):1665-1669. https://doi.org/10.1172/JCI78619.
View: Text | PDF | Corrigendum Brief Report

X-linked macrocytic dyserythropoietic anemia in females with an ALAS2 mutation

  • Text
  • PDF
Abstract

Macrocytic anemia with abnormal erythropoiesis is a common feature of megaloblastic anemias, congenital dyserythropoietic anemias, and myelodysplastic syndromes. Here, we characterized a family with multiple female individuals who have macrocytic anemia. The proband was noted to have dyserythropoiesis and iron overload. After an extensive diagnostic evaluation that did not provide insight into the cause of the disease, whole-exome sequencing of multiple family members revealed the presence of a mutation in the X chromosomal gene ALAS2, which encodes 5′-aminolevulinate synthase 2, in the affected females. We determined that this mutation (Y365C) impairs binding of the essential cofactor pyridoxal 5′-phosphate to ALAS2, resulting in destabilization of the enzyme and consequent loss of function. X inactivation was not highly skewed in wbc from the affected individuals. In contrast, and consistent with the severity of the ALAS2 mutation, there was a complete skewing toward expression of the WT allele in mRNA from reticulocytes that could be recapitulated in primary erythroid cultures. Together, the results of the X inactivation and mRNA studies illustrate how this X-linked dominant mutation in ALAS2 can perturb normal erythropoiesis through cell-nonautonomous effects. Moreover, our findings highlight the value of whole-exome sequencing in diagnostically challenging cases for the identification of disease etiology and extension of the known phenotypic spectrum of disease.

Authors

Vijay G. Sankaran, Jacob C. Ulirsch, Vassili Tchaikovskii, Leif S. Ludwig, Aoi Wakabayashi, Senkottuvelan Kadirvel, R. Coleman Lindsley, Rafael Bejar, Jiahai Shi, Scott B. Lovitch, David F. Bishop, David P. Steensma

×

Identification of a human synaptotagmin-1 mutation that perturbs synaptic vesicle cycling
Kate Baker, … , Michael A. Cousin, F. Lucy Raymond
Kate Baker, … , Michael A. Cousin, F. Lucy Raymond
Published February 23, 2015
Citation Information: J Clin Invest. 2015;125(4):1670-1678. https://doi.org/10.1172/JCI79765.
View: Text | PDF

Identification of a human synaptotagmin-1 mutation that perturbs synaptic vesicle cycling

  • Text
  • PDF
Abstract

Synaptotagmin-1 (SYT1) is a calcium-binding synaptic vesicle protein that is required for both exocytosis and endocytosis. Here, we describe a human condition associated with a rare variant in SYT1. The individual harboring this variant presented with an early onset dyskinetic movement disorder, severe motor delay, and profound cognitive impairment. Structural MRI was normal, but EEG showed extensive neurophysiological disturbances that included the unusual features of low-frequency oscillatory bursts and enhanced paired-pulse depression of visual evoked potentials. Trio analysis of whole-exome sequence identified a de novo SYT1 missense variant (I368T). Expression of rat SYT1 containing the equivalent human variant in WT mouse primary hippocampal cultures revealed that the mutant form of SYT1 correctly localizes to nerve terminals and is expressed at levels that are approximately equal to levels of endogenous WT protein. The presence of the mutant SYT1 slowed synaptic vesicle fusion kinetics, a finding that agrees with the previously demonstrated role for I368 in calcium-dependent membrane penetration. Expression of the I368T variant also altered the kinetics of synaptic vesicle endocytosis. Together, the clinical features, electrophysiological phenotype, and in vitro neuronal phenotype associated with this dominant negative SYT1 mutation highlight presynaptic mechanisms that mediate human motor control and cognitive development.

Authors

Kate Baker, Sarah L. Gordon, Detelina Grozeva, Margriet van Kogelenberg, Nicola Y. Roberts, Michael Pike, Edward Blair, Matthew E. Hurles, W. Kling Chong, Torsten Baldeweg, Manju A. Kurian, Stewart G. Boyd, Michael A. Cousin, F. Lucy Raymond

×

S-nitrosoglutathione reductase–dependent PPARγ denitrosylation participates in MSC-derived adipogenesis and osteogenesis
Yenong Cao, … , Wayne Balkan, Joshua M. Hare
Yenong Cao, … , Wayne Balkan, Joshua M. Hare
Published March 23, 2015
Citation Information: J Clin Invest. 2015;125(4):1679-1691. https://doi.org/10.1172/JCI73780.
View: Text | PDF

S-nitrosoglutathione reductase–dependent PPARγ denitrosylation participates in MSC-derived adipogenesis and osteogenesis

  • Text
  • PDF
Abstract

Bone marrow–derived mesenchymal stem cells (MSCs) are a common precursor of both adipocytes and osteoblasts. While it is appreciated that PPARγ regulates the balance between adipogenesis and osteogenesis, the roles of additional regulators of this process remain controversial. Here, we show that MSCs isolated from mice lacking S-nitrosoglutathione reductase, a denitrosylase that regulates protein S-nitrosylation, exhibited decreased adipogenesis and increased osteoblastogenesis compared with WT MSCs. Consistent with this cellular phenotype, S-nitrosoglutathione reductase–deficient mice were smaller, with reduced fat mass and increased bone formation that was accompanied by elevated bone resorption. WT and S-nitrosoglutathione reductase–deficient MSCs exhibited equivalent PPARγ expression; however, S-nitrosylation of PPARγ was elevated in S-nitrosoglutathione reductase–deficient MSCs, diminishing binding to its downstream target fatty acid–binding protein 4 (FABP4). We further identified Cys 139 of PPARγ as an S-nitrosylation site and demonstrated that S-nitrosylation of PPARγ inhibits its transcriptional activity, suggesting a feedback regulation of PPARγ transcriptional activity by NO-mediated S-nitrosylation. Together, these results reveal that S-nitrosoglutathione reductase–dependent modification of PPARγ alters the balance between adipocyte and osteoblast differentiation and provides checkpoint regulation of the lineage bifurcation of these 2 lineages. Moreover, these findings provide pathophysiological and therapeutic insights regarding MSC participation in adipogenesis and osteogenesis.

Authors

Yenong Cao, Samirah A. Gomes, Erika B. Rangel, Ellena C. Paulino, Tatiana L. Fonseca, Jinliang Li, Marilia B. Teixeira, Cecilia H. Gouveia, Antonio C. Bianco, Michael S. Kapiloff, Wayne Balkan, Joshua M. Hare

×

STAT3 upregulation in pituitary somatotroph adenomas induces growth hormone hypersecretion
Cuiqi Zhou, … , Kolja Wawrowsky, Shlomo Melmed
Cuiqi Zhou, … , Kolja Wawrowsky, Shlomo Melmed
Published March 16, 2015
Citation Information: J Clin Invest. 2015;125(4):1692-1702. https://doi.org/10.1172/JCI78173.
View: Text | PDF

STAT3 upregulation in pituitary somatotroph adenomas induces growth hormone hypersecretion

  • Text
  • PDF
Abstract

Pituitary somatotroph adenomas result in dysregulated growth hormone (GH) hypersecretion and acromegaly; however, regulatory mechanisms that promote GH hypersecretion remain elusive. Here, we provide evidence that STAT3 directly induces somatotroph tumor cell GH. Evaluation of pituitary tumors revealed that STAT3 expression was enhanced in human GH-secreting adenomas compared with that in nonsecreting pituitary tumors. Moreover, STAT3 and GH expression were concordant in a somatotroph adenoma tissue array. Promoter and expression analysis in a GH-secreting rat cell line (GH3) revealed that STAT3 specifically binds the Gh promoter and induces transcription. Stable expression of STAT3 in GH3 cells induced expression of endogenous GH, and expression of a constitutively active STAT3 further enhanced GH production. Conversely, expression of dominant-negative STAT3 abrogated GH expression. In primary human somatotroph adenoma-derived cell cultures, STAT3 suppression with the specific inhibitor S3I-201 attenuated GH transcription and reduced GH secretion in the majority of derivative cultures. In addition, S3I-201 attenuated somatotroph tumor growth and GH secretion in a rat xenograft model. GH induced STAT3 phosphorylation and nuclear translocation, indicating a positive feedback loop between STAT3 and GH in somatotroph tumor cells. Together, these results indicate that adenoma GH hypersecretion is the result of STAT3-dependent GH induction, which in turn promotes STAT3 expression, and suggest STAT3 as a potential therapeutic target for pituitary somatotroph adenomas.

Authors

Cuiqi Zhou, Yonghui Jiao, Renzhi Wang, Song-Guang Ren, Kolja Wawrowsky, Shlomo Melmed

×

Frequent somatic reversion of KRT1 mutations in ichthyosis with confetti
Keith A. Choate, … , Leonard M. Milstone, Richard P. Lifton
Keith A. Choate, … , Leonard M. Milstone, Richard P. Lifton
Published March 16, 2015
Citation Information: J Clin Invest. 2015;125(4):1703-1707. https://doi.org/10.1172/JCI64415.
View: Text | PDF Brief Report

Frequent somatic reversion of KRT1 mutations in ichthyosis with confetti

  • Text
  • PDF
Abstract

Widespread reversion of genetic disease is rare; however, such events are particularly evident in some skin disorders in which normal clones develop on a background of affected skin. We previously demonstrated that mutations in keratin 10 (KRT10) cause ichthyosis with confetti (IWC), a severe dominant disorder that is characterized by progressive development of hundreds of normal skin spots via revertant mosaicism. Here, we report on a clinical and histological IWC subtype in which affected subjects have red, scaly skin at birth, experience worsening palmoplantar keratoderma in childhood, and develop hundreds of normal skin spots, beginning at around 20 years of age, that increase in size and number over time. We identified a causal de novo mutation in keratin 1 (KRT1). Similar to IWC-causing KRT10 mutations, this mutation in KRT1 resulted in a C-terminal frameshift, replacing 22 C-terminal amino acids with an alternate 30-residue peptide. Mutant KRT1 caused partial collapse of the cytoplasmic intermediate filament network and mislocalized to the nucleus. As with KRT10 mutations causing IWC, reversion of KRT1 mutations occurred via mitotic recombination. Because reversion is not observed with other disease-causing keratin mutations, the results of this study implicate KRT1 and KRT10 C-terminal frameshift mutations in the high frequency of revertant mosaicism in IWC.

Authors

Keith A. Choate, Yin Lu, Jing Zhou, Peter M. Elias, Samir Zaidi, Amy S. Paller, Anita Farhi, Carol Nelson-Williams, Debra Crumrine, Leonard M. Milstone, Richard P. Lifton

×

Normalization of Naxos plakoglobin levels restores cardiac function in mice
Zhiwei Zhang, … , Xinmin Zhou, Ju Chen
Zhiwei Zhang, … , Xinmin Zhou, Ju Chen
Published February 23, 2015
Citation Information: J Clin Invest. 2015;125(4):1708-1712. https://doi.org/10.1172/JCI80335.
View: Text | PDF Brief Report

Normalization of Naxos plakoglobin levels restores cardiac function in mice

  • Text
  • PDF
Abstract

Arrhythmogenic cardiomyopathy (AC) is associated with mutations in genes encoding intercalated disc proteins and ultimately results in sudden cardiac death. A subset of patients with AC have the autosomal recessive cardiocutaneous disorder Naxos disease, which is caused by a 2–base pair deletion in the plakoglobin-encoding gene JUP that results in a truncated protein with reduced expression. In mice, cardiomyocyte-specific plakoglobin deficiency recapitulates many aspects of human AC, and overexpression of the truncated Naxos-associated plakoglobin also results in an AC-like phenotype; therefore, it is unclear whether Naxos disease results from loss or gain of function consequent to the plakoglobin mutation. Here, we generated 2 knockin mouse models in which endogenous Jup was engineered to express the Naxos-associated form of plakoglobin. In one model, Naxos plakoglobin bypassed the nonsense-mediated mRNA decay pathway, resulting in normal levels of the truncated plakoglobin. Moreover, restoration of Naxos plakoglobin to WT levels resulted in normal heart function. Together, these data indicate that a gain of function in the truncated form of the protein does not underlie the clinical phenotype of patients with Naxos disease and instead suggest that insufficiency of the truncated Naxos plakoglobin accounts for disease manifestation. Moreover, these results suggest that increasing levels of truncated or WT plakoglobin has potential as a therapeutic approach to Naxos disease.

Authors

Zhiwei Zhang, Matthew J. Stroud, Jianlin Zhang, Xi Fang, Kunfu Ouyang, Kensuke Kimura, Yongxin Mu, Nancy D. Dalton, Yusu Gu, William H. Bradford, Kirk L. Peterson, Hongqiang Cheng, Xinmin Zhou, Ju Chen

×

CXCR3 blockade protects against Listeria monocytogenes infection–induced fetal wastage
Vandana Chaturvedi, … , Helen N. Jones, Sing Sing Way
Vandana Chaturvedi, … , Helen N. Jones, Sing Sing Way
Published March 9, 2015
Citation Information: J Clin Invest. 2015;125(4):1713-1725. https://doi.org/10.1172/JCI78578.
View: Text | PDF

CXCR3 blockade protects against Listeria monocytogenes infection–induced fetal wastage

  • Text
  • PDF
Abstract

Mammalian pregnancy requires protection against immunological rejection of the developing fetus bearing discordant paternal antigens. Immune evasion in this developmental context entails silenced expression of chemoattractant proteins (chemokines), thereby preventing harmful immune cells from penetrating the maternal-fetal interface. Here, we demonstrate that fetal wastage triggered by prenatal Listeria monocytogenes infection is driven by placental recruitment of CXCL9-producing inflammatory neutrophils and macrophages that promote infiltration of fetal-specific T cells into the decidua. Maternal CD8+ T cells with fetal specificity upregulated expression of the chemokine receptor CXCR3 and, together with neutrophils and macrophages, were essential for L. monocytogenes–induced fetal resorption. Conversely, decidual accumulation of maternal T cells with fetal specificity and fetal wastage were extinguished by CXCR3 blockade or in CXCR3-deficient mice. Remarkably, protection against fetal wastage and in utero L. monocytogenes invasion was maintained even when CXCR3 neutralization was initiated after infection, and this protective effect extended to fetal resorption triggered by partial ablation of immune-suppressive maternal Tregs, which expand during pregnancy to sustain fetal tolerance. Together, our results indicate that functionally overriding chemokine silencing at the maternal-fetal interface promotes the pathogenesis of prenatal infection and suggest that therapeutically reinforcing this pathway represents a universal approach for mitigating immune-mediated pregnancy complications.

Authors

Vandana Chaturvedi, James M. Ertelt, Tony T. Jiang, Jeremy M. Kinder, Lijun Xin, Kathryn J. Owens, Helen N. Jones, Sing Sing Way

×

Progesterone and HMOX-1 promote fetal growth by CD8+ T cell modulation
María Emilia Solano, … , Khalil Karimi, Petra Clara Arck
María Emilia Solano, … , Khalil Karimi, Petra Clara Arck
Published March 16, 2015
Citation Information: J Clin Invest. 2015;125(4):1726-1738. https://doi.org/10.1172/JCI68140.
View: Text | PDF

Progesterone and HMOX-1 promote fetal growth by CD8+ T cell modulation

  • Text
  • PDF
Abstract

Intrauterine growth restriction (IUGR) affects up to 10% of pregnancies in Western societies. IUGR is a strong predictor of reduced short-term neonatal survival and impairs long-term health in children. Placental insufficiency is often associated with IUGR; however, the molecular mechanisms involved in the pathogenesis of placental insufficiency and IUGR are largely unknown. Here, we developed a mouse model of fetal-growth restriction and placental insufficiency that is induced by a midgestational stress challenge. Compared with control animals, pregnant dams subjected to gestational stress exhibited reduced progesterone levels and placental heme oxygenase 1 (Hmox1) expression and increased methylation at distinct regions of the placental Hmox1 promoter. These stress-triggered changes were accompanied by an altered CD8+ T cell response, as evidenced by a reduction of tolerogenic CD8+CD122+ T cells and an increase of cytotoxic CD8+ T cells. Using progesterone receptor– or Hmox1-deficient mice, we identified progesterone as an upstream modulator of placental Hmox1 expression. Supplementation of progesterone or depletion of CD8+ T cells revealed that progesterone suppresses CD8+ T cell cytotoxicity, whereas the generation of CD8+CD122+ T cells is supported by Hmox1 and ameliorates fetal-growth restriction in Hmox1 deficiency. These observations in mice could promote the identification of pregnancies at risk for IUGR and the generation of clinical interventional strategies.

Authors

María Emilia Solano, Mirka Katharina Kowal, Greta Eugenia O’Rourke, Andrea Kristina Horst, Kathrin Modest, Torsten Plösch, Roja Barikbin, Chressen Catharina Remus, Robert G. Berger, Caitlin Jago, Hoang Ho, Gabriele Sass, Victoria J. Parker, John P. Lydon, Francesco J. DeMayo, Kurt Hecher, Khalil Karimi, Petra Clara Arck

×

Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene
Joshua W. Knowles, … , Mark Walker, Thomas Quertermous
Joshua W. Knowles, … , Mark Walker, Thomas Quertermous
Published March 23, 2015
Citation Information: J Clin Invest. 2015;125(4):1739-1751. https://doi.org/10.1172/JCI74692.
View: Text | PDF | Corrigendum

Identification and validation of N-acetyltransferase 2 as an insulin sensitivity gene

  • Text
  • PDF
Abstract

Decreased insulin sensitivity, also referred to as insulin resistance (IR), is a fundamental abnormality in patients with type 2 diabetes and a risk factor for cardiovascular disease. While IR predisposition is heritable, the genetic basis remains largely unknown. The GENEticS of Insulin Sensitivity consortium conducted a genome-wide association study (GWAS) for direct measures of insulin sensitivity, such as euglycemic clamp or insulin suppression test, in 2,764 European individuals, with replication in an additional 2,860 individuals. The presence of a nonsynonymous variant of N-acetyltransferase 2 (NAT2) [rs1208 (803A>G, K268R)] was strongly associated with decreased insulin sensitivity that was independent of BMI. The rs1208 “A” allele was nominally associated with IR-related traits, including increased fasting glucose, hemoglobin A1C, total and LDL cholesterol, triglycerides, and coronary artery disease. NAT2 acetylates arylamine and hydrazine drugs and carcinogens, but predicted acetylator NAT2 phenotypes were not associated with insulin sensitivity. In a murine adipocyte cell line, silencing of NAT2 ortholog Nat1 decreased insulin-mediated glucose uptake, increased basal and isoproterenol-stimulated lipolysis, and decreased adipocyte differentiation, while Nat1 overexpression produced opposite effects. Nat1-deficient mice had elevations in fasting blood glucose, insulin, and triglycerides and decreased insulin sensitivity, as measured by glucose and insulin tolerance tests, with intermediate effects in Nat1 heterozygote mice. Our results support a role for NAT2 in insulin sensitivity.

Authors

Joshua W. Knowles, Weijia Xie, Zhongyang Zhang, Indumathi Chennemsetty, Themistocles L. Assimes, Jussi Paananen, Ola Hansson, James Pankow, Mark O. Goodarzi, Ivan Carcamo-Orive, Andrew P. Morris, Yii-Der I. Chen, Ville-Petteri Mäkinen, Andrea Ganna, Anubha Mahajan, Xiuqing Guo, Fahim Abbasi, Danielle M. Greenawalt, Pek Lum, Cliona Molony, Lars Lind, Cecilia Lindgren, Leslie J. Raffel, Philip S. Tsao, The RISC (Relationship between Insulin Sensitivity and Cardiovascular Disease) Consortium, The EUGENE2 (European Network on Functional Genomics of Type 2 Diabetes) Study, The GUARDIAN (Genetics UndeRlying DIAbetes in HispaNics) Consortium, The SAPPHIRe (Stanford Asian and Pacific Program for Hypertension and Insulin Resistance) Study, Eric E. Schadt, Jerome I. Rotter, Alan Sinaiko, Gerald Reaven, Xia Yang, Chao A. Hsiung, Leif Groop, Heather J. Cordell, Markku Laakso, Ke Hao, Erik Ingelsson, Timothy M. Frayling, Michael N. Weedon, Mark Walker, Thomas Quertermous

×

Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients
Isabelle Magalhaes, … , Karine Clément, Agnès Lehuen
Isabelle Magalhaes, … , Karine Clément, Agnès Lehuen
Published March 9, 2015
Citation Information: J Clin Invest. 2015;125(4):1752-1762. https://doi.org/10.1172/JCI78941.
View: Text | PDF

Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients

  • Text
  • PDF
Abstract

Obesity and type 2 diabetes (T2D) are associated with low-grade inflammation, activation of immune cells, and alterations of the gut microbiota. Mucosal-associated invariant T (MAIT) cells, which are innate-like T cells that recognize bacterial ligands, are present in blood and enriched in mucosal and inflamed tissues. Here, we analyzed MAIT cells in the blood and adipose tissues of patients with T2D and/or severe obesity. We determined that circulating MAIT cell frequency was dramatically decreased in both patient groups, and this population was even undetectable in some obese patients. Moreover, in both patient groups, circulating MAIT cells displayed an activated phenotype that was associated with elevated Th1 and Th17 cytokine production. In obese patients, MAIT cells were more abundant in adipose tissue than in the blood and exhibited a striking IL-17 profile. Bariatric surgery in obese patients not only improved their metabolic parameters but also increased circulating MAIT cell frequency at 3 months after surgery. Similarly, cytokine production by blood MAIT cells was strongly decreased after surgery. This study reveals profound MAIT cell abnormalities in patients harboring metabolic disorders, suggesting their potential role in these pathologies.

Authors

Isabelle Magalhaes, Karine Pingris, Christine Poitou, Stéphanie Bessoles, Nicolas Venteclef, Badr Kiaf, Lucie Beaudoin, Jennifer Da Silva, Omran Allatif, Jamie Rossjohn, Lars Kjer-Nielsen, James McCluskey, Séverine Ledoux, Laurent Genser, Adriana Torcivia, Claire Soudais, Olivier Lantz, Christian Boitard, Judith Aron-Wisnewsky, Etienne Larger, Karine Clément, Agnès Lehuen

×
Retraction
Novel APC-like properties of human NK cells directly regulate T cell activation
Jacob Hanna, … , Jane H. Buckner, Ofer Mandelboim
Jacob Hanna, … , Jane H. Buckner, Ofer Mandelboim
Published April 1, 2015
Citation Information: J Clin Invest. 2015;125(4):1763-1763. https://doi.org/10.1172/JCI81527.
View: Text | PDF | Amended Article

Novel APC-like properties of human NK cells directly regulate T cell activation

  • Text
  • PDF
Abstract

Authors

Jacob Hanna, Tsufit Gonen-Gross, Jonathan Fitchett, Tony Rowe, Mark Daniels, Tal I. Arnon, Roi Gazit, Aviva Joseph, Karoline W. Schjetne, Alexander Steinle, Angel Porgador, Dror Mevorach, Debra Goldman-Wohl, Simcha Yagel, Michael J. LaBarre, Jane H. Buckner, Ofer Mandelboim

×
Corrigendum
A human immunodeficiency caused by mutations in the PIK3R1 gene
Marie-Céline Deau, … , Alain Fischer, Sven Kracker
Marie-Céline Deau, … , Alain Fischer, Sven Kracker
Published April 1, 2015
Citation Information: J Clin Invest. 2015;125(4):1764-1765. https://doi.org/10.1172/JCI81746.
View: Text | PDF | Amended Article

A human immunodeficiency caused by mutations in the PIK3R1 gene

  • Text
  • PDF
Abstract

Authors

Marie-Céline Deau, Lucie Heurtier, Pierre Frange, Felipe Suarez, Christine Bole-Feysot, Patrick Nitschke, Marina Cavazzana, Capucine Picard, Anne Durandy, Alain Fischer, Sven Kracker

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts