Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
  • Current Issue
  • Past Issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Author's Takes
  • Reviews
    • View all reviews ...
    • 100th Anniversary of Insulin's Discovery (Jan 2021)
    • Hypoxia-inducible factors in disease pathophysiology and therapeutics (Oct 2020)
    • Latency in Infectious Disease (Jul 2020)
    • Immunotherapy in Hematological Cancers (Apr 2020)
    • Big Data's Future in Medicine (Feb 2020)
    • Mechanisms Underlying the Metabolic Syndrome (Oct 2019)
    • Reparative Immunology (Jul 2019)
    • View all review series ...
  • Viewpoint
  • Collections
    • Recently published
    • In-Press Preview
    • Commentaries
    • Concise Communication
    • Editorials
    • Viewpoint
    • Top read articles
  • Clinical Medicine
  • JCI This Month
    • Current issue
    • Past issues

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Author's Takes
  • Recently published
  • In-Press Preview
  • Commentaries
  • Concise Communication
  • Editorials
  • Viewpoint
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Alerts
  • Advertising/recruitment
  • Subscribe
  • Contact
CXCR5+ T helper cells mediate protective immunity against tuberculosis
Samantha R. Slight, … , Troy D. Randall, Shabaana A. Khader
Samantha R. Slight, … , Troy D. Randall, Shabaana A. Khader
Published January 2, 2013
Citation Information: J Clin Invest. 2013;123(2):712-726. https://doi.org/10.1172/JCI65728.
View: Text | PDF
Research Article Immunology

CXCR5+ T helper cells mediate protective immunity against tuberculosis

  • Text
  • PDF
Abstract

One third of the world’s population is infected with Mycobacterium tuberculosis (Mtb). Although most infected people remain asymptomatic, they have a 10% lifetime risk of developing active tuberculosis (TB). Thus, the current challenge is to identify immune parameters that distinguish individuals with latent TB from those with active TB. Using human and experimental models of Mtb infection, we demonstrated that organized ectopic lymphoid structures containing CXCR5+ T cells were present in Mtb-infected lungs. In addition, we found that in experimental Mtb infection models, the presence of CXCR5+ T cells within ectopic lymphoid structures was associated with immune control. Furthermore, in a mouse model of Mtb infection, we showed that activated CD4+CXCR5+ T cells accumulated in Mtb-infected lungs and produced proinflammatory cytokines. Mice deficient in Cxcr5 had increased susceptibility to TB due to defective T cell localization within the lung parenchyma. We demonstrated that CXCR5 expression in T cells mediated correct T cell localization within TB granulomas, promoted efficient macrophage activation, protected against Mtb infection, and facilitated lymphoid follicle formation. These data demonstrate that CD4+CXCR5+ T cells play a protective role in the immune response against TB and highlight their potential use for future TB vaccine design and therapy.

Authors

Samantha R. Slight, Javier Rangel-Moreno, Radha Gopal, Yinyao Lin, Beth A. Fallert Junecko, Smriti Mehra, Moises Selman, Enrique Becerril-Villanueva, Javier Baquera-Heredia, Lenin Pavon, Deepak Kaushal, Todd A. Reinhart, Troy D. Randall, Shabaana A. Khader

×

Figure 8

CXCL13 is produced by hematopoietic and non-hematopoietic cells and required for Mtb control.

Options: View larger image (or click on image) Download as PowerPoint
CXCL13 is produced by hematopoietic and non-hematopoietic cells and requ...
(A) FFPE lung sections from B6 Mtb-infected mice were assessed for CXCL13-producing populations by immunofluorescence. (B) Alveolar macrophages (Alv macs), lung CD11c+ cells, lung fibroblasts, and MTECs were left untreated or treated with irradiated Mtb (100 μg/ml) for 24 hours and supernatants assayed for CXCL13 protein. ND, not detectable. (C) CD11c+ and CD11c– cells were sorted from B6 Mtb-infected lungs (day 50 after infection), and log10 fold induction of Cxcl13 mRNA was determined by RT-PCR. Hematopoietic Cxcl13–/– BMC mice (B6 host/–/– BM), non-hematopoietic Cxcl13–/– BMC mice (–/– host/B6 BM), complete Cxcl13–/– BMC mice (–/– host/–/– BM), and complete B6 BMC mice (B6 host/B6 BM) were infected with Mtb, and lung bacterial burden was determined on days 30 (D) and 50 (E). (F) Pulmonary B cell lymphoid follicles were detected in FFPE lung sections (day 50) by immunofluorescence staining for CD3, IgG, and B220; DAPI (blue) was used to detect nuclei. (G) Average size of the B cell lymphoid follicles was determined using the morphometric tool of the Zeiss Axioplan microscope. (H) Day 30 FFPE lung sections were assayed for Cxcl13 mRNA localization by ISH. Black arrows indicate CXCL13 localization within granulomas. Original magnification, ×600 (ISH); ×200 (immunofluorescence). The data points represent the mean (±SD) of values from 3–4 samples (A and B) or from 4–6 mice (C–H). *P = 0.05, **P = 0.005, ***P = 0.0005. One experiment representative of 2 is shown.
Follow JCI:
Copyright © 2021 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts