Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact

Issue published February 1, 2013 Previous issue | Next issue

  • Volume 123, Issue 2
Go to section:
  • Science in Medicine
  • Conversations with Giants in Medicine
  • Hindsight
  • The Attending Physician
  • Commentaries
  • Research Articles
  • Corrigenda

On the cover: A green tea polyphenol in combination therapy

On page 787 of this month’s JCI, Kumazoe et al. report that the green tea polyphenol (–)-epigallocatechin-3-O-gallate (EGCG) can bind to the 67-kDa laminin receptor (67LR) to promote cancer cell death in a cyclic GMP–dependent manner. They found that a phosphodiesterase 5 inhibitor, which increases cyclic GMP levels, potentiated EGCG-induced cell death through the 67LR pathway without affecting normal cells and that this combination therapy increased survival time in a mouse xenograft model.
Science in Medicine
Alzheimer’s disease and insulin resistance: translating basic science into clinical applications
Fernanda G. De Felice
Fernanda G. De Felice
Published February 1, 2013
Citation Information: J Clin Invest. 2013;123(2):531-539. https://doi.org/10.1172/JCI64595.
View: Text | PDF

Alzheimer’s disease and insulin resistance: translating basic science into clinical applications

  • Text
  • PDF
Abstract

Alzheimer’s disease (AD) and diabetes are currently considered among the top threats to human health worldwide. Intriguingly, a connection between these diseases has been established during the past decade, since insulin resistance, a hallmark of type 2 diabetes, also develops in Alzheimer brains. In this article, the molecular and cellular mechanisms underlying defective brain insulin signaling in AD are discussed, with emphasis on evidence that Alzheimer’s and diabetes share common inflammatory signaling pathways. I put forward here a hypothesis on how a cross-talk between peripheral tissues and the brain might influence the development of AD, and highlight important unanswered questions in the field. Furthermore, I discuss a rational basis for the use of antidiabetic agents as novel and potentially effective therapeutics in AD.

Authors

Fernanda G. De Felice

×
Conversations with Giants in Medicine
A conversation with Jeffrey M. Friedman
Ushma S. Neill
Ushma S. Neill
Published February 1, 2013
Citation Information: J Clin Invest. 2013;123(2):529-530. https://doi.org/10.1172/JCI68394.
View: Text | PDF

A conversation with Jeffrey M. Friedman

  • Text
  • PDF
Abstract

Authors

Ushma S. Neill

×
Hindsight
Linking endothelial dysfunction with endothelial cell activation
James K. Liao
James K. Liao
Published February 1, 2013
Citation Information: J Clin Invest. 2013;123(2):540-541. https://doi.org/10.1172/JCI66843.
View: Text | PDF

Linking endothelial dysfunction with endothelial cell activation

  • Text
  • PDF
Abstract

The thin layer of cells that lines the interior of blood vessels, known as the endothelium, plays a complex role in vascular biology. The endothelium mediates blood vessel tone, hemostasis, neutrophil recruitment, hormone trafficking, and fluid filtration. Endothelial dysfunction, as defined by a lack of NO, has been linked to a variety of disease states, including atherosclerosis, diabetes mellitus, coronary artery disease, hypertension, and hypercholesterolemia. Indeed, restoration of endothelial function is one of the earliest recognizable benefits of statin therapy. In 1995, James Liao and colleagues published a study in the JCI demonstrating that NO is a vascular protective factor that limits endothelial activation and prevents leukocyte adhesion to the vessel wall.

Authors

James K. Liao

×
The Attending Physician
Reducing cardiovascular mortality in chronic kidney disease: something borrowed, something new
L. Darryl Quarles
L. Darryl Quarles
Published January 9, 2013
Citation Information: J Clin Invest. 2013;123(2):542-543. https://doi.org/10.1172/JCI67203.
View: Text | PDF

Reducing cardiovascular mortality in chronic kidney disease: something borrowed, something new

  • Text
  • PDF
Abstract

Clinical vignette: A 48-year-old man with chronic kidney disease stage five due to type II diabetes mellitus and hypertension was referred for hemodialysis initiation. His physical exam showed a blood pressure of 150/80, normal fundi, a positive fourth heart sound (S4), and trace pedal edema. Moderate aortic calcification was present on prior chest X-ray. The ECG showed left ventricle hypertrophy by voltage and slight prolongation of the QT interval. Medications included chlorthalidone, amlodipine, carvedilol, cholecalciferol, erythropoietin, and a phosphate binder. What additional therapy should be initiated to reduce vascular calcifications and cardiovascular mortality?

Authors

L. Darryl Quarles

×

Clash of the microbes: let’s bring back the good guys
Martin J. Wolff, … , Michael A. Poles, Judith A. Aberg
Martin J. Wolff, … , Michael A. Poles, Judith A. Aberg
Published January 16, 2013
Citation Information: J Clin Invest. 2013;123(2):544-545. https://doi.org/10.1172/JCI66736.
View: Text | PDF

Clash of the microbes: let’s bring back the good guys

  • Text
  • PDF
Abstract

A 38-year-old man with a history of HIV infection virologically suppressed on antiretroviral therapy presents to his gastroenterologist for evaluation of iron deficiency anemia and weight loss. A diagnostic colonoscopy demonstrates a two-centimeter ulcerated mass in the cecum. Biopsies of the lesion return moderately differentiated adenocarcinoma that is wild type for the KRAS mutation by real-time PCR.

Authors

Martin J. Wolff, Michael A. Poles, Judith A. Aberg

×
Commentaries
Ubiquitylation and the pathogenesis of hypertension
David H. Ellison
David H. Ellison
Published January 25, 2013
Citation Information: J Clin Invest. 2013;123(2):546-548. https://doi.org/10.1172/JCI66882.
View: Text | PDF

Ubiquitylation and the pathogenesis of hypertension

  • Text
  • PDF
Abstract

Liddle syndrome is monogenic hypertension caused by mutations in the epithelial Na+ channel (ENaC) that interfere with its ubiquitylation by Nedd4-2. In this issue, Ronzaud and colleagues found that deleting Nedd4-2 from kidney tubules in adult mice led to ENaC accumulation, but not at the plasma membrane, as predicted from current models. Instead, abundance of the sodium chloride transporter NCC increased at the plasma membrane, and the mice have some features of increased NCC activity. Together, the results suggest that defective ubiquitylation of ENaC by Nedd4-2 may not fully explain Liddle syndrome and that Nedd4-2 modulates NCC more strongly.

Authors

David H. Ellison

×

Multiple functions of a glioblastoma fusion oncogene
Ivan Babic, Paul S. Mischel
Ivan Babic, Paul S. Mischel
Published January 9, 2013
Citation Information: J Clin Invest. 2013;123(2):548-551. https://doi.org/10.1172/JCI67658.
View: Text | PDF

Multiple functions of a glioblastoma fusion oncogene

  • Text
  • PDF
Abstract

RNA sequencing facilitates the discovery of novel gene fusions in cancer. In this issue of the JCI, Parker et al. identify an FGFR3-TACC3 fusion oncogene in glioblastoma and demonstrate a novel mechanism of pathogenicity. A miR-99a binding site within the 3′–untranslated region (3′-UTR) of FGFR3 is lost, releasing FGFR3 signaling from miR-99a–dependent inhibition and greatly enhancing tumor progression relative to WT FGFR3. These results provide compelling insight into the pathogenicity of a novel fusion oncogene and suggest new therapeutic approaches for a subset of glioblastomas.

Authors

Ivan Babic, Paul S. Mischel

×

Old King Coal — molecular mechanisms underlying an ancient treatment for atopic eczema
W.H. Irwin McLean, Alan D. Irvine
W.H. Irwin McLean, Alan D. Irvine
Published January 25, 2013
Citation Information: J Clin Invest. 2013;123(2):551-553. https://doi.org/10.1172/JCI67438.
View: Text | PDF

Old King Coal — molecular mechanisms underlying an ancient treatment for atopic eczema

  • Text
  • PDF
Abstract

Traditional remedies for common disorders have been known for centuries, but insight into their mechanism of action is often limited. In this issue of the JCI, Joost Schalkwijk’s research group at the Radboud University Nijmegen Medical Centre in The Netherlands advances our understanding of why topical coal tar is an effective treatment for atopic dermatitis (AD), both rationalizing the use of this traditional medicine, and providing the scientific basis for new therapeutic approaches.

Authors

W.H. Irwin McLean, Alan D. Irvine

×

Nucleocytoplasmic connections and deafness
Howard J. Worman, Neil Segil
Howard J. Worman, Neil Segil
Published January 25, 2013
Citation Information: J Clin Invest. 2013;123(2):553-555. https://doi.org/10.1172/JCI67454.
View: Text | PDF

Nucleocytoplasmic connections and deafness

  • Text
  • PDF
Abstract

The linker of nucleoskeleton and cytoskeleton (LINC) complex connects the nuclear lamina to the cytoskeleton, in part to aid in nuclear positioning. Mutations in genes encoding LINC complex and lamina components cause a range of human diseases. In this issue of the JCI, Horn et al. report that mutations in the gene SYNE4 encoding the LINC complex protein nesprin-4 lead to progressive high-frequency hearing loss. Further, in mice deficient in nesprin-4 and Sun1, another LINC complex component, outer hair cells of the cochlea form normally during development, but die in the early postnatal weeks. These results link improper nuclear positioning specifically to the death of outer hair cells in the organ of Corti and ultimately to deafness.

Authors

Howard J. Worman, Neil Segil

×

Cancer therapy combination: green tea and a phosphodiesterase 5 inhibitor?
Chung S. Yang, Hong Wang
Chung S. Yang, Hong Wang
Published January 25, 2013
Citation Information: J Clin Invest. 2013;123(2):556-558. https://doi.org/10.1172/JCI67589.
View: Text | PDF

Cancer therapy combination: green tea and a phosphodiesterase 5 inhibitor?

  • Text
  • PDF
Abstract

The major constituent of green tea, (–)-epigallocatechin-3-O-gallate (EGCG), has been shown to have cancer-preventive and therapeutic activities. Numerous molecular targets for EGCG have been proposed, but the mechanisms of its anticancer activities are not clearly understood. In this issue of the JCI, Kumazoe et al. report that EGCG activates 67-kDa laminin receptor (67LR), elevates cGMP levels, and induces cancer cell apoptosis. Furthermore, a phosphodiesterase 5 inhibitor, vardenafil, synergizes with EGCG to induce cancer cell death. This is a provocative observation with important implications for cancer therapy. It also raises several issues for further investigation, such as the mechanism by which EGCG specifically activates 67LR.

Authors

Chung S. Yang, Hong Wang

×

Why stress is BAD for cancer patients
Archana S. Nagaraja, … , Susan K. Lutgendorf, Anil K. Sood
Archana S. Nagaraja, … , Susan K. Lutgendorf, Anil K. Sood
Published January 25, 2013
Citation Information: J Clin Invest. 2013;123(2):558-560. https://doi.org/10.1172/JCI67887.
View: Text | PDF

Why stress is BAD for cancer patients

  • Text
  • PDF
Abstract

Behavioral stress is known to promote tumor progression in experimental models, but the role of behavioral stress in cancer initiation is less clear. In this issue, Hassan et al. focus on the signaling and biological effects induced by stress hormones that lead to tumor cell evasion from apoptosis, resulting in prostate cancer progression.

Authors

Archana S. Nagaraja, Guillermo N. Armaiz-Pena, Susan K. Lutgendorf, Anil K. Sood

×

iRHOM2 takes control of rheumatoid arthritis
Stefan F. Lichtenthaler
Stefan F. Lichtenthaler
Published January 25, 2013
Citation Information: J Clin Invest. 2013;123(2):560-562. https://doi.org/10.1172/JCI67548.
View: Text | PDF

iRHOM2 takes control of rheumatoid arthritis

  • Text
  • PDF
Abstract

The cytokine TNF-α is a major drug target for rheumatoid arthritis, an inflammatory joint disorder. An alternative approach is to target the protease TNF-α convertase (TACE), which releases TNF-α from cells. However, because TACE cleaves other proteins involved in development and cancer, a tissue-specific inhibition of TACE in immune cells appears mandatory. In this issue of the JCI, Issuree et al. report that iRHOM2 is a TACE activator in immune cells. Loss of iRHOM2 largely protects mice from inflammatory arthritis, making iRHOM2 a potential drug target for this condition.

Authors

Stefan F. Lichtenthaler

×

B4 androgen ablation: attacking the prostate cancer stem cell
Max S. Wicha
Max S. Wicha
Published January 25, 2013
Citation Information: J Clin Invest. 2013;123(2):563-565. https://doi.org/10.1172/JCI67460.
View: Text | PDF

B4 androgen ablation: attacking the prostate cancer stem cell

  • Text
  • PDF
Abstract

There is increasing evidence that prostate cancers in rodent models and in men contain a cellular subpopulation that displays stem cell properties. These prostate cancer stem cells (PCSCs) lack androgen receptor expression and are increased in castration-resistant disease. In this issue of the JCI, a study from Yoshioka et al. demonstrates that PCSCs are regulated by a pathway in which α6β4 integrin amplifies signaling through ErbB2 and c-Met receptors. Targeting this pathway provides a novel therapeutic strategy for hormone refractory prostate cancer.

Authors

Max S. Wicha

×
Research Articles
MicroRNA-374a activates Wnt/β-catenin signaling to promote breast cancer metastasis
Junchao Cai, … , Jueheng Wu, Mengfeng Li
Junchao Cai, … , Jueheng Wu, Mengfeng Li
Published January 16, 2013
Citation Information: J Clin Invest. 2013;123(2):566-579. https://doi.org/10.1172/JCI65871.
View: Text | PDF

MicroRNA-374a activates Wnt/β-catenin signaling to promote breast cancer metastasis

  • Text
  • PDF
Abstract

Tumor metastasis involves a series of biological steps during which the tumor cells acquire the ability to invade surrounding tissues and survive outside the original tumor site. During the early stages, the cancer cells undergo an epithelial-mesenchymal transition (EMT). Wnt/β-catenin signaling is known to drive EMT and metastasis. Here we report that Wnt/β-catenin signaling is hyperactivated in metastatic breast cancer cells that express microRNA 374a (miR-374a). In breast cancer cell lines, ectopic overexpression of miR-374a promoted EMT and metastasis both in vitro and in vivo. Furthermore, miR-374a directly targeted and suppressed multiple negative regulators of the Wnt/β-catenin signaling cascade, including WIF1, PTEN, and WNT5A. Notably, miR-374a was markedly upregulated in primary tumor samples from patients with distant metastases and was associated with poor metastasis-free survival. These results demonstrate that miR-374a maintains constitutively activated Wnt/β-catenin signaling and may represent a therapeutic target for early metastatic breast cancer.

Authors

Junchao Cai, Hongyu Guan, Lishan Fang, Yi Yang, Xun Zhu, Jie Yuan, Jueheng Wu, Mengfeng Li

×

An obligate cell-intrinsic function for CD28 in Tregs
Ruan Zhang, … , Jonathan S. Maltzman, Laurence A. Turka
Ruan Zhang, … , Jonathan S. Maltzman, Laurence A. Turka
Published January 2, 2013
Citation Information: J Clin Invest. 2013;123(2):580-593. https://doi.org/10.1172/JCI65013.
View: Text | PDF

An obligate cell-intrinsic function for CD28 in Tregs

  • Text
  • PDF
Abstract

Tregs expressing the transcription factor FOXP3 are critical for immune homeostasis. The costimulatory molecule CD28 is required for optimal activation and function of naive T cells; however, its role in Treg function has been difficult to dissect, as CD28 is required for thymic Treg development, and blockade of CD28-ligand interactions has confounding effects in trans on nonregulatory cells. To address this question, we created Treg-specific Cd28 conditional knockout mice. Despite the presence of normal numbers of FOXP3+ cells, these animals accumulated large numbers of activated T cells, developed severe autoimmunity that primarily affected the skin and lungs, and failed to appropriately resolve induced experimental allergic encephalomyelitis. This in vivo functional impairment was accompanied by dampened expression of CTLA-4, PD-1, and CCR6. Disease occurrence was not due to subversion of Cd28-deficient Tregs into pathogenic cells, as complementation with normal Tregs prevented disease occurrence. Interestingly, in these “competitive” environments, Cd28-deficient Tregs exhibited a pronounced proliferative/survival disadvantage. These data demonstrate clear postmaturational roles for CD28 in FOXP3+ Tregs and provide mechanisms which we believe to be novel to explain how interruption of CD28-ligand interactions may enhance immune responses independent of effects on thymic development or on other cell types.

Authors

Ruan Zhang, Alexandria Huynh, Gregory Whitcher, JiHoon Chang, Jonathan S. Maltzman, Laurence A. Turka

×

Superior T memory stem cell persistence supports long-lived T cell memory
Enrico Lugli, … , Genoveffa Franchini, Mario Roederer
Enrico Lugli, … , Genoveffa Franchini, Mario Roederer
Published January 2, 2013
Citation Information: J Clin Invest. 2013;123(2):594-599. https://doi.org/10.1172/JCI66327.
View: Text | PDF Brief Report

Superior T memory stem cell persistence supports long-lived T cell memory

  • Text
  • PDF
Abstract

Long-lived memory T cells are able to persist in the host in the absence of antigen; however, the mechanism by which they are maintained is not well understood. Recently, a subset of human T cells, stem cell memory T cells (TSCM cells), was shown to be self-renewing and multipotent, thereby providing a potential reservoir for T cell memory throughout life. However, their in vivo dynamics and homeostasis still remain to be defined due to the lack of suitable animal models. We identified T cells with a TSCM phenotype and stem cell–like properties in nonhuman primates. These cells were the least-differentiated memory subset, were functionally distinct from conventional memory cells, and served as precursors of central memory. Antigen-specific TSCM cells preferentially localized to LNs and were virtually absent from mucosal surfaces. They were generated in the acute phase of viral infection, preferentially survived in comparison with all other memory cells following elimination of antigen, and stably persisted for the long term. Thus, one mechanism for maintenance of long-term T cell memory derives from the unique homeostatic properties of TSCM cells. Vaccination strategies designed to elicit durable cellular immunity should target the generation of TSCM cells.

Authors

Enrico Lugli, Maria H. Dominguez, Luca Gattinoni, Pratip K. Chattopadhyay, Diane L. Bolton, Kaimei Song, Nichole R. Klatt, Jason M. Brenchley, Monica Vaccari, Emma Gostick, David A. Price, Thomas A. Waldmann, Nicholas P. Restifo, Genoveffa Franchini, Mario Roederer

×

EWS/ATF1 expression induces sarcomas from neural crest–derived cells in mice
Kazunari Yamada, … , Akira Hara, Yasuhiro Yamada
Kazunari Yamada, … , Akira Hara, Yasuhiro Yamada
Published January 2, 2013
Citation Information: J Clin Invest. 2013;123(2):600-610. https://doi.org/10.1172/JCI63572.
View: Text | PDF

EWS/ATF1 expression induces sarcomas from neural crest–derived cells in mice

  • Text
  • PDF
Abstract

Clear cell sarcoma (CCS) is an aggressive soft tissue malignant tumor characterized by a unique t(12;22) translocation that leads to the expression of a chimeric EWS/ATF1 fusion gene. However, little is known about the mechanisms underlying the involvement of EWS/ATF1 in CCS development. In addition, the cellular origins of CCS have not been determined. Here, we generated EWS/ATF1-inducible mice and examined the effects of EWS/ATF1 expression in adult somatic cells. We found that forced expression of EWS/ATF1 resulted in the development of EWS/ATF1-dependent sarcomas in mice. The histology of EWS/ATF1-induced sarcomas resembled that of CCS, and EWS/ATF1-induced tumor cells expressed CCS markers, including S100, SOX10, and MITF. Lineage-tracing experiments indicated that neural crest–derived cells were subject to EWS/ATF1-driven transformation. EWS/ATF1 directly induced Fos in an ERK-independent manner. Treatment of human and EWS/ATF1-induced CCS tumor cells with FOS-targeted siRNA attenuated proliferation. These findings demonstrated that FOS mediates the growth of EWS/ATF1-associated sarcomas and suggest that FOS is a potential therapeutic target in human CCS.

Authors

Kazunari Yamada, Takatoshi Ohno, Hitomi Aoki, Katsunori Semi, Akira Watanabe, Hiroshi Moritake, Shunichi Shiozawa, Takahiro Kunisada, Yukiko Kobayashi, Junya Toguchida, Katsuji Shimizu, Akira Hara, Yasuhiro Yamada

×

Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice
Paolo E. Porporato, … , Stefano Geuna, Andrea Graziani
Paolo E. Porporato, … , Stefano Geuna, Andrea Graziani
Published January 2, 2013
Citation Information: J Clin Invest. 2013;123(2):611-622. https://doi.org/10.1172/JCI39920.
View: Text | PDF

Acylated and unacylated ghrelin impair skeletal muscle atrophy in mice

  • Text
  • PDF
Abstract

Cachexia is a wasting syndrome associated with cancer, AIDS, multiple sclerosis, and several other disease states. It is characterized by weight loss, fatigue, loss of appetite, and skeletal muscle atrophy and is associated with poor patient prognosis, making it an important treatment target. Ghrelin is a peptide hormone that stimulates growth hormone (GH) release and positive energy balance through binding to the receptor GHSR-1a. Only acylated ghrelin (AG), but not the unacylated form (UnAG), can bind GHSR-1a; however, UnAG and AG share several GHSR-1a–independent biological activities. Here we investigated whether UnAG and AG could protect against skeletal muscle atrophy in a GHSR-1a–independent manner. We found that both AG and UnAG inhibited dexamethasone-induced skeletal muscle atrophy and atrogene expression through PI3Kβ-, mTORC2-, and p38-mediated pathways in myotubes. Upregulation of circulating UnAG in mice impaired skeletal muscle atrophy induced by either fasting or denervation without stimulating muscle hypertrophy and GHSR-1a–mediated activation of the GH/IGF-1 axis. In Ghsr-deficient mice, both AG and UnAG induced phosphorylation of Akt in skeletal muscle and impaired fasting-induced atrophy. These results demonstrate that AG and UnAG act on a common, unidentified receptor to block skeletal muscle atrophy in a GH-independent manner.

Authors

Paolo E. Porporato, Nicoletta Filigheddu, Simone Reano, Michele Ferrara, Elia Angelino, Viola F. Gnocchi, Flavia Prodam, Giulia Ronchi, Sharmila Fagoonee, Michele Fornaro, Federica Chianale, Gianluca Baldanzi, Nicola Surico, Fabiola Sinigaglia, Isabelle Perroteau, Roy G. Smith, Yuxiang Sun, Stefano Geuna, Andrea Graziani

×

Patients with type 1 diabetes exhibit altered cerebral metabolism during hypoglycemia
Kim C.C. van de Ven, … , Marinette van der Graaf, Bastiaan E. de Galan
Kim C.C. van de Ven, … , Marinette van der Graaf, Bastiaan E. de Galan
Published January 9, 2013
Citation Information: J Clin Invest. 2013;123(2):623-629. https://doi.org/10.1172/JCI62742.
View: Text | PDF

Patients with type 1 diabetes exhibit altered cerebral metabolism during hypoglycemia

  • Text
  • PDF
Abstract

Patients with type 1 diabetes mellitus (T1DM) experience, on average, 2 to 3 hypoglycemic episodes per week. This study investigated the effect of hypoglycemia on cerebral glucose metabolism in patients with uncomplicated T1DM. For this purpose, hyperinsulinemic euglycemic and hypoglycemic glucose clamps were performed on separate days, using [1-13C]glucose infusion to increase plasma 13C enrichment. In vivo brain 13C magnetic resonance spectroscopy was used to measure the time course of 13C label incorporation into different metabolites and to calculate the tricarboxylic acid cycle flux (VTCA) by a one-compartment metabolic model. We found that cerebral glucose metabolism, as reflected by the VTCA, was not significantly different comparing euglycemic and hypoglycemic conditions in patients with T1DM. However, the VTCA was inversely related to the HbA1C and was, under hypoglycemic conditions, approximately 45% higher than that in a previously investigated group of healthy subjects. These data suggest that the brains of patients with T1DM are better able to endure moderate hypoglycemia than those of subjects without diabetes.

Authors

Kim C.C. van de Ven, Cees J. Tack, Arend Heerschap, Marinette van der Graaf, Bastiaan E. de Galan

×

Hepatitis B virus X protein represses miRNA-148a to enhance tumorigenesis
Xiaojie Xu, … , Nan Du, Qinong Ye
Xiaojie Xu, … , Nan Du, Qinong Ye
Published January 16, 2013
Citation Information: J Clin Invest. 2013;123(2):630-645. https://doi.org/10.1172/JCI64265.
View: Text | PDF

Hepatitis B virus X protein represses miRNA-148a to enhance tumorigenesis

  • Text
  • PDF
Abstract

MicroRNAs (miRNAs) have been shown to be dysregulated in virus-related cancers; however, miRNA regulation of virus-related cancer development and progression remains poorly understood. Here, we report that miR-148a is repressed by hepatitis B virus (HBV) X protein (HBx) to promote cancer growth and metastasis in a mouse model of hepatocellular carcinoma (HCC). Hematopoietic pre–B cell leukemia transcription factor–interacting protein (HPIP) is an important regulator of cancer cell growth. We used miRNA target prediction programs to identify miR-148a as a regulator of HPIP. Expression of miR-148a in hepatoma cells reduced HPIP expression, leading to repression of AKT and ERK and subsequent inhibition of mTOR through the AKT/ERK/FOXO4/ATF5 pathway. HBx has been shown to play a critical role in the molecular pathogenesis of HBV-related HCC. We found that HBx suppressed p53-mediated activation of miR-148a. Moreover, expression of miR-148a was downregulated in patients with HBV-related liver cancer and negatively correlated with HPIP, which was upregulated in patients with liver cancer. In cultured cells and a mouse xenograft model, miR-148a reduced the growth, epithelial-to-mesenchymal transition, invasion, and metastasis of HBx-expressing hepatocarcinoma cells through inhibition of HPIP-mediated mTOR signaling. Thus, miR-148a activation or HPIP inhibition may be a useful strategy for cancer treatment.

Authors

Xiaojie Xu, Zhongyi Fan, Lei Kang, Juqiang Han, Chengying Jiang, Xiaofei Zheng, Ziman Zhu, Huabo Jiao, Jing Lin, Kai Jiang, Lihua Ding, Hao Zhang, Long Cheng, Hanjiang Fu, Yi Song, Ying Jiang, Jiahong Liu, Rongfu Wang, Nan Du, Qinong Ye

×

Deimination restores inner retinal visual function in murine demyelinating disease
Mabel Enriquez-Algeciras, … , Vittorio Porciatti, Sanjoy K. Bhattacharya
Mabel Enriquez-Algeciras, … , Vittorio Porciatti, Sanjoy K. Bhattacharya
Published January 2, 2013
Citation Information: J Clin Invest. 2013;123(2):646-656. https://doi.org/10.1172/JCI64811.
View: Text | PDF

Deimination restores inner retinal visual function in murine demyelinating disease

  • Text
  • PDF
Abstract

Progressive loss of visual function frequently accompanies demyelinating diseases such as multiple sclerosis (MS) and is hypothesized to be the result of damage to the axons and soma of neurons. Here, we show that dendritic impairment is also involved in these diseases. Deimination, a posttranslational modification, was reduced in the retinal ganglion cell layer of MS patients and in a transgenic mouse model of MS (ND4 mice). Reduced deimination accompanied a decrease in inner retinal function in ND4 mice, indicating loss of vision. Local restoration of deimination dramatically improved retinal function and elongation of neurites in isolated neurons. Further, neurite length was decreased by downregulation of deimination or siRNA knockdown of the export-binding protein REF, a primary target for deimination in these cells. REF localized to dendrites and bound selective mRNAs and translation machinery to promote protein synthesis. Thus, protein deimination and dendritic outgrowth play key roles in visual function and may be a general feature of demyelinating diseases.

Authors

Mabel Enriquez-Algeciras, Di Ding, Fabrizio G. Mastronardi, Robert E. Marc, Vittorio Porciatti, Sanjoy K. Bhattacharya

×

Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension
Caroline Ronzaud, … , Johannes Loffing, Olivier Staub
Caroline Ronzaud, … , Johannes Loffing, Olivier Staub
Published January 25, 2013
Citation Information: J Clin Invest. 2013;123(2):657-665. https://doi.org/10.1172/JCI61110.
View: Text | PDF

Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension

  • Text
  • PDF
Abstract

The E3 ubiquitin ligase NEDD4-2 (encoded by the Nedd4L gene) regulates the amiloride-sensitive epithelial Na+ channel (ENaC/SCNN1) to mediate Na+ homeostasis. Mutations in the human β/γENaC subunits that block NEDD4-2 binding or constitutive ablation of exons 6–8 of Nedd4L in mice both result in salt-sensitive hypertension and elevated ENaC activity (Liddle syndrome). To determine the role of renal tubular NEDD4-2 in adult mice, we generated tetracycline-inducible, nephron-specific Nedd4L KO mice. Under standard and high-Na+ diets, conditional KO mice displayed decreased plasma aldosterone but normal Na+/K+ balance. Under a high-Na+ diet, KO mice exhibited hypercalciuria and increased blood pressure, which were reversed by thiazide treatment. Protein expression of βENaC, γENaC, the renal outer medullary K+ channel (ROMK), and total and phosphorylated thiazide-sensitive Na+Cl– cotransporter (NCC) levels were increased in KO kidneys. Unexpectedly, Scnn1a mRNA, which encodes the αENaC subunit, was reduced and proteolytic cleavage of αENaC decreased. Taken together, these results demonstrate that loss of NEDD4-2 in adult renal tubules causes a new form of mild, salt-sensitive hypertension without hyperkalemia that is characterized by upregulation of NCC, elevation of β/γENaC, but not αENaC, and a normal Na+/K+ balance maintained by downregulation of ENaC activity and upregulation of ROMK.

Authors

Caroline Ronzaud, Dominique Loffing-Cueni, Pierrette Hausel, Anne Debonneville, Sumedha Ram Malsure, Nicole Fowler-Jaeger, Natasha A. Boase, Romain Perrier, Marc Maillard, Baoli Yang, John B. Stokes, Robert Koesters, Sharad Kumar, Edith Hummler, Johannes Loffing, Olivier Staub

×

Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation
Sutada Lotinun, … , William C. Horne, Roland Baron
Sutada Lotinun, … , William C. Horne, Roland Baron
Published January 16, 2013
Citation Information: J Clin Invest. 2013;123(2):666-681. https://doi.org/10.1172/JCI64840.
View: Text | PDF

Osteoclast-specific cathepsin K deletion stimulates S1P-dependent bone formation

  • Text
  • PDF
Abstract

Cathepsin K (CTSK) is secreted by osteoclasts to degrade collagen and other matrix proteins during bone resorption. Global deletion of Ctsk in mice decreases bone resorption, leading to osteopetrosis, but also increases the bone formation rate (BFR). To understand how Ctsk deletion increases the BFR, we generated osteoclast- and osteoblast-targeted Ctsk knockout mice using floxed Ctsk alleles. Targeted ablation of Ctsk in hematopoietic cells, or specifically in osteoclasts and cells of the monocyte-osteoclast lineage, resulted in increased bone volume and BFR as well as osteoclast and osteoblast numbers. In contrast, targeted deletion of Ctsk in osteoblasts had no effect on bone resorption or BFR, demonstrating that the increased BFR is osteoclast dependent. Deletion of Ctsk in osteoclasts increased their sphingosine kinase 1 (Sphk1) expression. Conditioned media from Ctsk-deficient osteoclasts, which contained elevated levels of sphingosine-1-phosphate (S1P), increased alkaline phosphatase and mineralized nodules in osteoblast cultures. An S1P1,3 receptor antagonist inhibited these responses. Osteoblasts derived from mice with Ctsk-deficient osteoclasts had an increased RANKL/OPG ratio, providing a positive feedback loop that increased the number of osteoclasts. Our data provide genetic evidence that deletion of CTSK in osteoclasts enhances bone formation in vivo by increasing the generation of osteoclast-derived S1P.

Authors

Sutada Lotinun, Riku Kiviranta, Takuma Matsubara, Jorge A. Alzate, Lynn Neff, Anja Lüth, Ilpo Koskivirta, Burkhard Kleuser, Jean Vacher, Eero Vuorio, William C. Horne, Roland Baron

×

β4 Integrin signaling induces expansion of prostate tumor progenitors
Toshiaki Yoshioka, … , Charles L. Sawyers, Filippo G. Giancotti
Toshiaki Yoshioka, … , Charles L. Sawyers, Filippo G. Giancotti
Published January 25, 2013
Citation Information: J Clin Invest. 2013;123(2):682-699. https://doi.org/10.1172/JCI60720.
View: Text | PDF

β4 Integrin signaling induces expansion of prostate tumor progenitors

  • Text
  • PDF
Abstract

The contextual signals that regulate the expansion of prostate tumor progenitor cells are poorly defined. We found that a significant fraction of advanced human prostate cancers and castration-resistant metastases express high levels of the β4 integrin, which binds to laminin-5. Targeted deletion of the signaling domain of β4 inhibited prostate tumor growth and progression in response to loss of p53 and Rb function in a mouse model of prostate cancer (PB-TAg mice). Additionally, it suppressed Pten loss-driven prostate tumorigenesis in tissue recombination experiments. We traced this defect back to an inability of signaling-defective β4 to sustain self-renewal of putative cancer stem cells in vitro and proliferation of transit-amplifying cells in vivo. Mechanistic studies indicated that mutant β4 fails to promote transactivation of ErbB2 and c-Met in prostate tumor progenitor cells and human cancer cell lines. Pharmacological inhibition of ErbB2 and c-Met reduced the ability of prostate tumor progenitor cells to undergo self-renewal in vitro. Finally, we found that β4 is often coexpressed with c-Met and ErbB2 in human prostate cancers and that combined pharmacological inhibition of these receptor tyrosine kinases exerts antitumor activity in a mouse xenograft model. These findings indicate that the β4 integrin promotes prostate tumorigenesis by amplifying ErbB2 and c-Met signaling in tumor progenitor cells.

Authors

Toshiaki Yoshioka, Javier Otero, Yu Chen, Young-Mi Kim, Jason A. Koutcher, Jaya Satagopan, Victor Reuter, Brett Carver, Elisa de Stanchina, Katsuhiko Enomoto, Norman M. Greenberg, Peter T. Scardino, Howard I. Scher, Charles L. Sawyers, Filippo G. Giancotti

×

NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer
Aurélie Couturier-Maillard, … , Philip Rosenstiel, Mathias Chamaillard
Aurélie Couturier-Maillard, … , Philip Rosenstiel, Mathias Chamaillard
Published January 2, 2013
Citation Information: J Clin Invest. 2013;123(2):700-711. https://doi.org/10.1172/JCI62236.
View: Text | PDF

NOD2-mediated dysbiosis predisposes mice to transmissible colitis and colorectal cancer

  • Text
  • PDF
Abstract

Instability in the composition of gut bacterial communities (dysbiosis) has been linked to common human intestinal disorders, such as Crohn’s disease and colorectal cancer. Here, we show that dysbiosis caused by Nod2 deficiency gives rise to a reversible, communicable risk of colitis and colitis-associated carcinogenesis in mice. Loss of either Nod2 or RIP2 resulted in a proinflammatory microenvironment that enhanced epithelial dysplasia following chemically induced injury. The condition could be improved by treatment with antibiotics or an anti–interleukin-6 receptor–neutralizing antibody. Genotype-dependent disease risk was communicable via maternally transmitted microbiota in both Nod2-deficient and WT hosts. Furthermore, reciprocal microbiota transplantation reduced disease risk in Nod2-deficient mice and led to long-term changes in intestinal microbial communities. Conversely, disease risk was enhanced in WT hosts that were recolonized with dysbiotic fecal microbiota from Nod2-deficient mice. Thus, we demonstrated that licensing of dysbiotic microbiota is a critical component of disease risk. Our results demonstrate that NOD2 has an unexpected role in shaping a protective assembly of gut bacterial communities and suggest that manipulation of dysbiosis is a potential therapeutic approach in the treatment of human intestinal disorders.

Authors

Aurélie Couturier-Maillard, Thomas Secher, Ateequr Rehman, Sylvain Normand, Adèle De Arcangelis, Robert Haesler, Ludovic Huot, Teddy Grandjean, Aude Bressenot, Anne Delanoye-Crespin, Olivier Gaillot, Stefan Schreiber, Yves Lemoine, Bernhard Ryffel, David Hot, Gabriel Nùñez, Grace Chen, Philip Rosenstiel, Mathias Chamaillard

×

CXCR5+ T helper cells mediate protective immunity against tuberculosis
Samantha R. Slight, … , Troy D. Randall, Shabaana A. Khader
Samantha R. Slight, … , Troy D. Randall, Shabaana A. Khader
Published January 2, 2013
Citation Information: J Clin Invest. 2013;123(2):712-726. https://doi.org/10.1172/JCI65728.
View: Text | PDF

CXCR5+ T helper cells mediate protective immunity against tuberculosis

  • Text
  • PDF
Abstract

One third of the world’s population is infected with Mycobacterium tuberculosis (Mtb). Although most infected people remain asymptomatic, they have a 10% lifetime risk of developing active tuberculosis (TB). Thus, the current challenge is to identify immune parameters that distinguish individuals with latent TB from those with active TB. Using human and experimental models of Mtb infection, we demonstrated that organized ectopic lymphoid structures containing CXCR5+ T cells were present in Mtb-infected lungs. In addition, we found that in experimental Mtb infection models, the presence of CXCR5+ T cells within ectopic lymphoid structures was associated with immune control. Furthermore, in a mouse model of Mtb infection, we showed that activated CD4+CXCR5+ T cells accumulated in Mtb-infected lungs and produced proinflammatory cytokines. Mice deficient in Cxcr5 had increased susceptibility to TB due to defective T cell localization within the lung parenchyma. We demonstrated that CXCR5 expression in T cells mediated correct T cell localization within TB granulomas, promoted efficient macrophage activation, protected against Mtb infection, and facilitated lymphoid follicle formation. These data demonstrate that CD4+CXCR5+ T cells play a protective role in the immune response against TB and highlight their potential use for future TB vaccine design and therapy.

Authors

Samantha R. Slight, Javier Rangel-Moreno, Radha Gopal, Yinyao Lin, Beth A. Fallert Junecko, Smriti Mehra, Moises Selman, Enrique Becerril-Villanueva, Javier Baquera-Heredia, Lenin Pavon, Deepak Kaushal, Todd A. Reinhart, Troy D. Randall, Shabaana A. Khader

×

KDM2B promotes pancreatic cancer via Polycomb-dependent and -independent transcriptional programs
Alexandros Tzatsos, … , Peter J. Park, Nabeel Bardeesy
Alexandros Tzatsos, … , Peter J. Park, Nabeel Bardeesy
Published January 16, 2013
Citation Information: J Clin Invest. 2013;123(2):727-739. https://doi.org/10.1172/JCI64535.
View: Text | PDF

KDM2B promotes pancreatic cancer via Polycomb-dependent and -independent transcriptional programs

  • Text
  • PDF
Abstract

Epigenetic mechanisms mediate heritable control of cell identity in normal cells and cancer. We sought to identify epigenetic regulators driving the pathogenesis of pancreatic ductal adenocarcinoma (PDAC), one of the most lethal human cancers. We found that KDM2B (also known as Ndy1, FBXL10, and JHDM1B), an H3K36 histone demethylase implicated in bypass of cellular senescence and somatic cell reprogramming, is markedly overexpressed in human PDAC, with levels increasing with disease grade and stage, and highest expression in metastases. KDM2B silencing abrogated tumorigenicity of PDAC cell lines exhibiting loss of epithelial differentiation, whereas KDM2B overexpression cooperated with KrasG12D to promote PDAC formation in mouse models. Gain- and loss-of-function experiments coupled to genome-wide gene expression and ChIP studies revealed that KDM2B drives tumorigenicity through 2 different transcriptional mechanisms. KDM2B repressed developmental genes through cobinding with Polycomb group (PcG) proteins at transcriptional start sites, whereas it activated a module of metabolic genes, including mediators of protein synthesis and mitochondrial function, cobound by the MYC oncogene and the histone demethylase KDM5A. These results defined epigenetic programs through which KDM2B subverts cellular differentiation and drives the pathogenesis of an aggressive subset of PDAC.

Authors

Alexandros Tzatsos, Polina Paskaleva, Francesco Ferrari, Vikram Deshpande, Svetlana Stoykova, Gianmarco Contino, Kwok-Kin Wong, Fei Lan, Patrick Trojer, Peter J. Park, Nabeel Bardeesy

×

The LINC complex is essential for hearing
Henning F. Horn, … , Colin L. Stewart, Karen B. Avraham
Henning F. Horn, … , Colin L. Stewart, Karen B. Avraham
Published January 25, 2013
Citation Information: J Clin Invest. 2013;123(2):740-750. https://doi.org/10.1172/JCI66911.
View: Text | PDF

The LINC complex is essential for hearing

  • Text
  • PDF
Abstract

Hereditary hearing loss is the most common sensory deficit. We determined that progressive high-frequency hearing loss in 2 families of Iraqi Jewish ancestry was due to homozygosity for the protein truncating mutation SYNE4 c.228delAT. SYNE4, a gene not previously associated with hearing loss, encodes nesprin-4 (NESP4), an outer nuclear membrane (ONM) protein expressed in the hair cells of the inner ear. The truncated NESP4 encoded by the families’ mutation did not localize to the ONM. NESP4 and SUN domain–containing protein 1 (SUN1), which localizes to the inner nuclear membrane (INM), are part of the linker of nucleoskeleton and cytoskeleton (LINC) complex in the nuclear envelope. Mice lacking either Nesp4 or Sun1 were evaluated for hair cell defects and hearing loss. In both Nesp4–/– and Sun1–/– mice, OHCs formed normally, but degenerated as hearing matured, leading to progressive hearing loss. The nuclei of OHCs from mutant mice failed to maintain their basal localization, potentially affecting cell motility and hence the response to sound. These results demonstrate that the LINC complex is essential for viability and normal morphology of OHCs and suggest that the position of the nucleus in sensory epithelial cells is critical for maintenance of normal hearing.

Authors

Henning F. Horn, Zippora Brownstein, Danielle R. Lenz, Shaked Shivatzki, Amiel A. Dror, Orit Dagan-Rosenfeld, Lilach M. Friedman, Kyle J. Roux, Serguei Kozlov, Kuan-Teh Jeang, Moshe Frydman, Brian Burke, Colin L. Stewart, Karen B. Avraham

×

Loss of SPARC in bladder cancer enhances carcinogenesis and progression
Neveen Said, … , Rolf A. Brekken, Dan Theodorescu
Neveen Said, … , Rolf A. Brekken, Dan Theodorescu
Published January 16, 2013
Citation Information: J Clin Invest. 2013;123(2):751-766. https://doi.org/10.1172/JCI64782.
View: Text | PDF | Corrigendum

Loss of SPARC in bladder cancer enhances carcinogenesis and progression

  • Text
  • PDF
Abstract

Secreted protein acidic and rich in cysteine (SPARC) has been implicated in multiple aspects of human cancer. However, its role in bladder carcinogenesis and metastasis are unclear,with some studies suggesting it may be a promoter and others arguing the opposite. Using a chemical carcinogenesis model in Sparc-deficient mice and their wild-type littermates, we found that loss of SPARC accelerated the development of urothelial preneoplasia (atypia and dysplasia), neoplasia, and metastasis and was associated with decreased survival. SPARC reduced carcinogen-induced inflammation and accumulation of reactive oxygen species as well as urothelial cell proliferation. Loss of SPARC was associated with an inflammatory phenotype of tumor-associated macrophages and fibroblasts, with concomitant increased activation of urothelial and stromal NF-κB and AP1 in vivo and in vitro. Syngeneic spontaneous and experimental metastasis models revealed that tumor- and stroma-derived SPARC reduced tumor growth and metastasis through inhibition of cancer-associated inflammation and lung colonization. In human bladder tumor tissues, the frequency and intensity of SPARC expression were inversely correlated with disease-specific survival. These results indicate that SPARC is produced by benign and malignant compartments of bladder carcinomas where it functions to suppress bladder carcinogenesis, progression, and metastasis.

Authors

Neveen Said, Henry F. Frierson, Marta Sanchez-Carbayo, Rolf A. Brekken, Dan Theodorescu

×

mTORC1 inhibition restricts inflammation-associated gastrointestinal tumorigenesis in mice
Stefan Thiem, … , Andrew Jarnicki, Matthias Ernst
Stefan Thiem, … , Andrew Jarnicki, Matthias Ernst
Published January 16, 2013
Citation Information: J Clin Invest. 2013;123(2):767-781. https://doi.org/10.1172/JCI65086.
View: Text | PDF

mTORC1 inhibition restricts inflammation-associated gastrointestinal tumorigenesis in mice

  • Text
  • PDF
Abstract

Gastrointestinal cancers are frequently associated with chronic inflammation and excessive secretion of IL-6 family cytokines, which promote tumorigenesis through persistent activation of the GP130/JAK/STAT3 pathway. Although tumor progression can be prevented by genetic ablation of Stat3 in mice, this transcription factor remains a challenging therapeutic target with a paucity of clinically approved inhibitors. Here, we uncovered parallel and excessive activation of mTOR complex 1 (mTORC1) alongside STAT3 in human intestinal-type gastric cancers (IGCs). Furthermore, in a preclinical mouse model of IGC, GP130 ligand administration simultaneously activated mTORC1/S6 kinase and STAT3 signaling. We therefore investigated whether mTORC1 activation was required for inflammation-associated gastrointestinal tumorigenesis. Strikingly, the mTORC1-specific inhibitor RAD001 potently suppressed initiation and progression of both murine IGC and colitis-associated colon cancer. The therapeutic effect of RAD001 was associated with reduced tumor vascularization and cell proliferation but occurred independently of STAT3 activity. We analyzed the mechanism of GP130-mediated mTORC1 activation in cells and mice and revealed a requirement for JAK and PI3K activity but not for GP130 tyrosine phosphorylation or STAT3. Our results suggest that GP130-dependent activation of the druggable PI3K/mTORC1 pathway is required for inflammation-associated gastrointestinal tumorigenesis. These findings advocate clinical application of PI3K/mTORC1 inhibitors for the treatment of corresponding human malignancies.

Authors

Stefan Thiem, Thomas P. Pierce, Michelle Palmieri, Tracy L. Putoczki, Michael Buchert, Adele Preaudet, Ryan O. Farid, Chris Love, Bruno Catimel, Zhengdeng Lei, Steve Rozen, Veena Gopalakrishnan, Fred Schaper, Michael Hallek, Alex Boussioutas, Patrick Tan, Andrew Jarnicki, Matthias Ernst

×

Oligodendrocyte precursors induce early blood-brain barrier opening after white matter injury
Ji Hae Seo, … , Eng H. Lo, Ken Arai
Ji Hae Seo, … , Eng H. Lo, Ken Arai
Published January 2, 2013
Citation Information: J Clin Invest. 2013;123(2):782-786. https://doi.org/10.1172/JCI65863.
View: Text | PDF Brief Report

Oligodendrocyte precursors induce early blood-brain barrier opening after white matter injury

  • Text
  • PDF
Abstract

Oligodendrocyte precursor cells (OPCs) are thought to maintain homeostasis and contribute to long-term repair in adult white matter; however, their roles in the acute phase after brain injury remain unclear. Mice that were subjected to prolonged cerebral hypoperfusion stress developed white matter demyelination over time. Prior to demyelination, we detected increased MMP9 expression, blood-brain barrier (BBB) leakage, and neutrophil infiltration in damaged white matter. Notably, at this early stage, OPCs made up the majority of MMP9-expressing cells. The standard MMP inhibitor GM6001 reduced the early BBB leakage and neutrophil infiltration, indicating that OPC-derived MMP9 induced early BBB disruption after white matter injury. Cell-culture experiments confirmed that OPCs secreted MMP9 under pathological conditions, and conditioned medium prepared from the stressed OPCs weakened endothelial barrier tightness in vitro. Our study reveals that OPCs can rapidly respond to white matter injury and produce MMP9 that disrupts the BBB, indicating that OPCs may mediate injury in white matter under disease conditions.

Authors

Ji Hae Seo, Nobukazu Miyamoto, Kazuhide Hayakawa, Loc-Duyen D. Pham, Takakuni Maki, Cenk Ayata, Kyu-Won Kim, Eng H. Lo, Ken Arai

×

67-kDa laminin receptor increases cGMP to induce cancer-selective apoptosis
Motofumi Kumazoe, … , Koji Yamada, Hirofumi Tachibana
Motofumi Kumazoe, … , Koji Yamada, Hirofumi Tachibana
Published January 25, 2013
Citation Information: J Clin Invest. 2013;123(2):787-799. https://doi.org/10.1172/JCI64768.
View: Text | PDF

67-kDa laminin receptor increases cGMP to induce cancer-selective apoptosis

  • Text
  • PDF
Abstract

The 67-kDa laminin receptor (67LR) is a laminin-binding protein overexpressed in various types of cancer, including bile duct carcinoma, colorectal carcinoma, cervical cancer, and breast carcinoma. 67LR plays a vital role in growth and metastasis of tumor cells and resistance to chemotherapy. Here, we show that 67LR functions as a cancer-specific death receptor. In this cell death receptor pathway, cGMP initiated cancer-specific cell death by activating the PKCδ/acid sphingomyelinase (PKCδ/ASM) pathway. Furthermore, upregulation of cGMP was a rate-determining process of 67LR-dependent cell death induced by the green tea polyphenol (–)-epigallocatechin-3-O-gallate (EGCG), a natural ligand of 67LR. We found that phosphodiesterase 5 (PDE5), a negative regulator of cGMP, was abnormally expressed in multiple cancers and attenuated 67LR-mediated cell death. Vardenafil, a PDE5 inhibitor that is used to treat erectile dysfunction, significantly potentiated the EGCG-activated 67LR-dependent apoptosis without affecting normal cells and prolonged the survival time in a mouse xenograft model. These results suggest that PDE5 inhibitors could be used to elevate cGMP levels to induce 67LR-mediated, cancer-specific cell death.

Authors

Motofumi Kumazoe, Kaori Sugihara, Shuntaro Tsukamoto, Yuhui Huang, Yukari Tsurudome, Takashi Suzuki, Yumi Suemasu, Naoki Ueda, Shuya Yamashita, Yoonhee Kim, Koji Yamada, Hirofumi Tachibana

×

Peptide-mediated desmoglein 3 crosslinking prevents pemphigus vulgaris autoantibody-induced skin blistering
Volker Spindler, … , Enno Schmidt, Jens Waschke
Volker Spindler, … , Enno Schmidt, Jens Waschke
Published January 9, 2013
Citation Information: J Clin Invest. 2013;123(2):800-811. https://doi.org/10.1172/JCI60139.
View: Text | PDF

Peptide-mediated desmoglein 3 crosslinking prevents pemphigus vulgaris autoantibody-induced skin blistering

  • Text
  • PDF
Abstract

In pemphigus vulgaris, a life-threatening autoimmune skin disease, epidermal blisters are caused by autoantibodies primarily targeting desmosomal cadherins desmoglein 3 (DSG3) and DSG1, leading to loss of keratinocyte cohesion. Due to limited insights into disease pathogenesis, current therapy relies primarily on nonspecific long-term immunosuppression. Both direct inhibition of DSG transinteraction and altered intracellular signaling by p38 MAPK likely contribute to the loss of cell adhesion. Here, we applied a tandem peptide (TP) consisting of 2 connected peptide sequences targeting the DSG adhesive interface that was capable of blocking autoantibody-mediated direct interference of DSG3 transinteraction, as revealed by atomic force microscopy and optical trapping. Importantly, TP abrogated autoantibody-mediated skin blistering in mice and was effective when applied topically. Mechanistically, TP inhibited both autoantibody-induced p38 MAPK activation and its association with DSG3, abrogated p38 MAPK-induced keratin filament retraction, and promoted desmosomal DSG3 oligomerization. These data indicate that p38 MAPK links autoantibody-mediated inhibition of DSG3 binding to skin blistering. By limiting loss of DSG3 transinteraction, p38 MAPK activation, and keratin filament retraction, which are hallmarks of pemphigus pathogenesis, TP may serve as a promising treatment option.

Authors

Volker Spindler, Vera Rötzer, Carina Dehner, Bettina Kempf, Martin Gliem, Mariya Radeva, Eva Hartlieb, Gregory S. Harms, Enno Schmidt, Jens Waschke

×

Spironolactone ameliorates PIT1-dependent vascular osteoinduction in klotho-hypomorphic mice
Jakob Voelkl, … , Makoto Kuro-o, Florian Lang
Jakob Voelkl, … , Makoto Kuro-o, Florian Lang
Published January 9, 2013
Citation Information: J Clin Invest. 2013;123(2):812-822. https://doi.org/10.1172/JCI64093.
View: Text | PDF

Spironolactone ameliorates PIT1-dependent vascular osteoinduction in klotho-hypomorphic mice

  • Text
  • PDF
Abstract

Klotho is a potent regulator of 1,25-hydroxyvitamin D3 [1,25(OH)2D3] formation and calcium-phosphate metabolism. Klotho-hypomorphic mice (kl/kl mice) suffer from severe growth deficits, rapid aging, hyperphosphatemia, hyperaldosteronism, and extensive vascular and soft tissue calcification. Sequelae of klotho deficiency are similar to those of end-stage renal disease. We show here that the mineralocorticoid receptor antagonist spironolactone reduced vascular and soft tissue calcification and increased the life span of kl/kl mice, without significant effects on 1,25(OH)2D3, FGF23, calcium, and phosphate plasma concentrations. Spironolactone also reduced the expression of osteoinductive Pit1 and Tnfa mRNA, osteogenic transcription factors, and alkaline phosphatase (Alpl) in calcified tissues of kl/kl mice. In human aortic smooth muscle cells (HAoSMCs), aldosterone dose-dependently increased PIT1 mRNA expression, an effect paralleled by increased expression of osteogenic transcription factors and enhanced ALP activity. The effects of aldosterone were reversed by both spironolactone treatment and PIT1 silencing and were mitigated by FGF23 cotreatment in HAoSMCs. In conclusion, aldosterone contributes to vascular and soft tissue calcification, an effect due, at least in part, to stimulation of spironolactone-sensitive, PIT1-dependent osteoinductive signaling.

Authors

Jakob Voelkl, Ioana Alesutan, Christina B. Leibrock, Leticia Quintanilla-Martinez, Volker Kuhn, Martina Feger, Sobuj Mia, Mohamed S.E. Ahmed, Kevin P. Rosenblatt, Makoto Kuro-o, Florian Lang

×

Regulation of dendritic cell activation by microRNA let-7c and BLIMP1
Sun Jung Kim, … , Peter K. Gregersen, Betty Diamond
Sun Jung Kim, … , Peter K. Gregersen, Betty Diamond
Published January 9, 2013
Citation Information: J Clin Invest. 2013;123(2):823-833. https://doi.org/10.1172/JCI64712.
View: Text | PDF

Regulation of dendritic cell activation by microRNA let-7c and BLIMP1

  • Text
  • PDF
Abstract

Mice with a DC-specific deletion of the transcriptional repressor B lymphocyte–induced maturation protein-1 (Blimp1) exhibit a lupus-like phenotype, secondary to enhanced DC production of IL-6. Here we explored further phenotypic changes in Blimp1-deficient DCs, the molecular mechanism underlying these changes, and their relevance to human disease. Blimp1-deficient DCs exhibited elevated expression of MHC II, and exposure to TLR agonists increased secretion of proinflammatory cytokines. This phenotype reflects enhanced expression of the microRNA let-7c, which is regulated by BLIMP1. Let-7c reciprocally inhibited Blimp1 and also blocked LPS-induced suppressor of cytokine signaling-1 (SOCS1) expression, contributing to the proinflammatory phenotype of Blimp1-deficient DCs. DCs from Blimp1 SLE-risk allele carriers exhibited analogous phenotypic changes, including decreased BLIMP1 expression, increased let-7c expression, and increased expression of proinflammatory cytokines. These results suggest that let-7c regulates DC phenotype and confirm the importance of BLIMP1 in maintaining tolerogenic DCs in both mice and humans.

Authors

Sun Jung Kim, Peter K. Gregersen, Betty Diamond

×

Liver acid sphingomyelinase inhibits growth of metastatic colon cancer
Yosuke Osawa, … , Mitsuru Seishima, Osamu Kozawa
Yosuke Osawa, … , Mitsuru Seishima, Osamu Kozawa
Published January 9, 2013
Citation Information: J Clin Invest. 2013;123(2):834-843. https://doi.org/10.1172/JCI65188.
View: Text | PDF

Liver acid sphingomyelinase inhibits growth of metastatic colon cancer

  • Text
  • PDF
Abstract

Acid sphingomyelinase (ASM) regulates the homeostasis of sphingolipids, including ceramides and sphingosine-1-phosphate (S1P). These sphingolipids regulate carcinogenesis and proliferation, survival, and apoptosis of cancer cells. However, the role of ASM in host defense against liver metastasis remains unclear. In this study, the involvement of ASM in liver metastasis of colon cancer was examined using Asm–/– and Asm+/+ mice that were inoculated with SL4 colon cancer cells to produce metastatic liver tumors. Asm–/– mice demonstrated enhanced tumor growth and reduced macrophage accumulation in the tumor, accompanied by decreased numbers of hepatic myofibroblasts (hMFs), which express tissue inhibitor of metalloproteinase 1 (TIMP1), around the tumor margin. Tumor growth was increased by macrophage depletion or by Timp1 deficiency, but was decreased by hepatocyte-specific ASM overexpression, which was associated with increased S1P production. S1P stimulated macrophage migration and TIMP1 expression in hMFs in vitro. These findings indicate that ASM in the liver inhibits tumor growth through cytotoxic macrophage accumulation and TIMP1 production by hMFs in response to S1P. Targeting ASM may represent a new therapeutic strategy for treating liver metastasis of colon cancer.

Authors

Yosuke Osawa, Atsushi Suetsugu, Rie Matsushima-Nishiwaki, Ichiro Yasuda, Toshiji Saibara, Hisataka Moriwaki, Mitsuru Seishima, Osamu Kozawa

×

Specialized role of migratory dendritic cells in peripheral tolerance induction
Juliana Idoyaga, … , Miriam Merad, Ralph M. Steinman
Juliana Idoyaga, … , Miriam Merad, Ralph M. Steinman
Published January 9, 2013
Citation Information: J Clin Invest. 2013;123(2):844-854. https://doi.org/10.1172/JCI65260.
View: Text | PDF

Specialized role of migratory dendritic cells in peripheral tolerance induction

  • Text
  • PDF
Abstract

Harnessing DCs for immunotherapies in vivo requires the elucidation of the physiological role of distinct DC populations. Migratory DCs traffic from peripheral tissues to draining lymph nodes charged with tissue self antigens. We hypothesized that these DC populations have a specialized role in the maintenance of peripheral tolerance, specifically, to generate suppressive Foxp3+ Tregs. To examine the differential capacity of migratory DCs versus blood-derived lymphoid-resident DCs for Treg generation in vivo, we targeted a self antigen, myelin oligodendrocyte glycoprotein, using antibodies against cell surface receptors differentially expressed in these DC populations. Using this approach together with mouse models that lack specific DC populations, we found that migratory DCs have a superior ability to generate Tregs in vivo, which in turn drastically improve the outcome of experimental autoimmune encephalomyelitis. These results provide a rationale for the development of novel therapies targeting migratory DCs for the treatment of autoimmune diseases.

Authors

Juliana Idoyaga, Christopher Fiorese, Lori Zbytnuik, Ashira Lubkin, Jennifer Miller, Bernard Malissen, Daniel Mucida, Miriam Merad, Ralph M. Steinman

×

The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma
Brittany C. Parker, … , Matti Nykter, Wei Zhang
Brittany C. Parker, … , Matti Nykter, Wei Zhang
Published January 9, 2013
Citation Information: J Clin Invest. 2013;123(2):855-865. https://doi.org/10.1172/JCI67144.
View: Text | PDF

The tumorigenic FGFR3-TACC3 gene fusion escapes miR-99a regulation in glioblastoma

  • Text
  • PDF
Abstract

Fusion genes are chromosomal aberrations that are found in many cancers and can be used as prognostic markers and drug targets in clinical practice. Fusions can lead to production of oncogenic fusion proteins or to enhanced expression of oncogenes. Several recent studies have reported that some fusion genes can escape microRNA regulation via 3′–untranslated region (3′-UTR) deletion. We performed whole transcriptome sequencing to identify fusion genes in glioma and discovered FGFR3-TACC3 fusions in 4 of 48 glioblastoma samples from patients both of mixed European and of Asian descent, but not in any of 43 low-grade glioma samples tested. The fusion, caused by tandem duplication on 4p16.3, led to the loss of the 3′-UTR of FGFR3, blocking gene regulation of miR-99a and enhancing expression of the fusion gene. The fusion gene was mutually exclusive with EGFR, PDGFR, or MET amplification. Using cultured glioblastoma cells and a mouse xenograft model, we found that fusion protein expression promoted cell proliferation and tumor progression, while WT FGFR3 protein was not tumorigenic, even under forced overexpression. These results demonstrated that the FGFR3-TACC3 gene fusion is expressed in human cancer and generates an oncogenic protein that promotes tumorigenesis in glioblastoma.

Authors

Brittany C. Parker, Matti J. Annala, David E. Cogdell, Kirsi J. Granberg, Yan Sun, Ping Ji, Xia Li, Joy Gumin, Hong Zheng, Limei Hu, Olli Yli-Harja, Hannu Haapasalo, Tapio Visakorpi, Xiuping Liu, Chang-gong Liu, Raymond Sawaya, Gregory N. Fuller, Kexin Chen, Frederick F. Lang, Matti Nykter, Wei Zhang

×

Dynamic visualization of RANKL and Th17-mediated osteoclast function
Junichi Kikuta, … , Ronald N. Germain, Masaru Ishii
Junichi Kikuta, … , Ronald N. Germain, Masaru Ishii
Published January 16, 2013
Citation Information: J Clin Invest. 2013;123(2):866-873. https://doi.org/10.1172/JCI65054.
View: Text | PDF Technical Advance

Dynamic visualization of RANKL and Th17-mediated osteoclast function

  • Text
  • PDF
Abstract

Osteoclasts are bone resorbing, multinucleate cells that differentiate from mononuclear macrophage/monocyte-lineage hematopoietic precursor cells. Although previous studies have revealed important molecular signals, how the bone resorptive functions of such cells are controlled in vivo remains less well characterized. Here, we visualized fluorescently labeled mature osteoclasts in intact mouse bone tissues using intravital multiphoton microscopy. Within this mature population, we observed cells with distinct motility behaviors and function, with the relative proportion of static – bone resorptive (R) to moving – nonresorptive (N) varying in accordance with the pathophysiological conditions of the bone. We also found that rapid application of the osteoclast-activation factor RANKL converted many N osteoclasts to R, suggesting a novel point of action in RANKL-mediated control of mature osteoclast function. Furthermore, we showed that Th17 cells, a subset of RANKL-expressing CD4+ T cells, could induce rapid N-to-R conversion of mature osteoclasts via cell-cell contact. These findings provide new insights into the activities of mature osteoclasts in situ and identify actions of RANKL-expressing Th17 cells in inflammatory bone destruction.

Authors

Junichi Kikuta, Yoh Wada, Toshiyuki Kowada, Ze Wang, Ge-Hong Sun-Wada, Issei Nishiyama, Shin Mizukami, Nobuhiko Maiya, Hisataka Yasuda, Atsushi Kumanogoh, Kazuya Kikuchi, Ronald N. Germain, Masaru Ishii

×

Behavioral stress accelerates prostate cancer development in mice
Sazzad Hassan, … , Sandeep Robert Datta, George Kulik
Sazzad Hassan, … , Sandeep Robert Datta, George Kulik
Published January 25, 2013
Citation Information: J Clin Invest. 2013;123(2):874-886. https://doi.org/10.1172/JCI63324.
View: Text | PDF

Behavioral stress accelerates prostate cancer development in mice

  • Text
  • PDF
Abstract

Prostate cancer patients have increased levels of stress and anxiety. Conversely, men who take beta blockers, which interfere with signaling from the stress hormones adrenaline and noradrenaline, have a lower incidence of prostate cancer; however, the mechanisms underlying stress–prostate cancer interactions are unknown. Here, we report that stress promotes prostate carcinogenesis in mice in an adrenaline-dependent manner. Behavioral stress inhibited apoptosis and delayed prostate tumor involution both in phosphatase and tensin homolog–deficient (PTEN-deficient) prostate cancer xenografts treated with PI3K inhibitor and in prostate tumors of mice with prostate-restricted expression of c-MYC (Hi-Myc mice) subjected to androgen ablation therapy with bicalutamide. Additionally, stress accelerated prostate cancer development in Hi-Myc mice. The effects of stress were prevented by treatment with the selective β2-adrenergic receptor (ADRB2) antagonist ICI118,551 or by inducible expression of PKA inhibitor (PKI) or of BCL2-associated death promoter (BAD) with a mutated PKA phosphorylation site (BADS112A) in xenograft tumors. Effects of stress were also blocked in Hi-Myc mice expressing phosphorylation-deficient BAD (BAD3SA). These results demonstrate interactions between prostate tumors and the psychosocial environment mediated by activation of an adrenaline/ADRB2/PKA/BAD antiapoptotic signaling pathway. Our findings could be used to identify prostate cancer patients who could benefit from stress reduction or from pharmacological inhibition of stress-induced signaling.

Authors

Sazzad Hassan, Yelena Karpova, Daniele Baiz, Dana Yancey, Ashok Pullikuth, Anabel Flores, Thomas Register, J. Mark Cline, Ralph D’Agostino Jr., Nika Danial, Sandeep Robert Datta, George Kulik

×

Blockade of NOX2 and STIM1 signaling limits lipopolysaccharide-induced vascular inflammation
Rajesh Kumar Gandhirajan, … , Donald L. Gill, Muniswamy Madesh
Rajesh Kumar Gandhirajan, … , Donald L. Gill, Muniswamy Madesh
Published January 25, 2013
Citation Information: J Clin Invest. 2013;123(2):887-902. https://doi.org/10.1172/JCI65647.
View: Text | PDF

Blockade of NOX2 and STIM1 signaling limits lipopolysaccharide-induced vascular inflammation

  • Text
  • PDF
Abstract

During sepsis, acute lung injury (ALI) results from activation of innate immune cells and endothelial cells by endotoxins, leading to systemic inflammation through proinflammatory cytokine overproduction, oxidative stress, and intracellular Ca2+ overload. Despite considerable investigation, the underlying molecular mechanism(s) leading to LPS-induced ALI remain elusive. To determine whether stromal interaction molecule 1–dependent (STIM1-dependent) signaling drives endothelial dysfunction in response to LPS, we investigated oxidative and STIM1 signaling of EC-specific Stim1-knockout mice. Here we report that LPS-mediated Ca2+ oscillations are ablated in ECs deficient in Nox2, Stim1, and type II inositol triphosphate receptor (Itpr2). LPS-induced nuclear factor of activated T cells (NFAT) nuclear accumulation was abrogated by either antioxidant supplementation or Ca2+ chelation. Moreover, ECs lacking either Nox2 or Stim1 failed to trigger store-operated Ca2+ entry (SOCe) and NFAT nuclear accumulation. LPS-induced vascular permeability changes were reduced in EC-specific Stim1–/– mice, despite elevation of systemic cytokine levels. Additionally, inhibition of STIM1 signaling prevented receptor-interacting protein 3–dependent (RIP3-dependent) EC death. Remarkably, BTP2, a small-molecule calcium release–activated calcium (CRAC) channel blocker administered after insult, halted LPS-induced vascular leakage and pulmonary edema. These results indicate that ROS-driven Ca2+ signaling promotes vascular barrier dysfunction and that the SOCe machinery may provide crucial therapeutic targets to limit sepsis-induced ALI.

Authors

Rajesh Kumar Gandhirajan, Shu Meng, Harish C. Chandramoorthy, Karthik Mallilankaraman, Salvatore Mancarella, Hui Gao, Roshanak Razmpour, Xiao-Feng Yang, Steven R. Houser, Ju Chen, Walter J. Koch, Hong Wang, Jonathan Soboloff, Donald L. Gill, Muniswamy Madesh

×

Probiotic/prebiotic supplementation of antiretrovirals improves gastrointestinal immunity in SIV-infected macaques
Nichole R. Klatt, … , Jacob D. Estes, Jason M. Brenchley
Nichole R. Klatt, … , Jacob D. Estes, Jason M. Brenchley
Published January 16, 2013
Citation Information: J Clin Invest. 2013;123(2):903-907. https://doi.org/10.1172/JCI66227.
View: Text | PDF Brief Report

Probiotic/prebiotic supplementation of antiretrovirals improves gastrointestinal immunity in SIV-infected macaques

  • Text
  • PDF
Abstract

HIV infection results in gastrointestinal (GI) tract damage, microbial translocation, and immune activation, which are not completely ameliorated with suppression of viremia by antiretroviral (ARV) therapy. Furthermore, increased morbidity and mortality of ARV-treated HIV-infected individuals is associated with these dysfunctions. Thus, to enhance GI tract physiology, we treated SIV-infected pigtail macaques with ARVs, probiotics, and prebiotics or with ARVs alone. This synbiotic treatment resulted in increased frequency and functionality of GI tract APCs, enhanced reconstitution and functionality of CD4+ T cells, and reduced fibrosis of lymphoid follicles in the colon. Thus, ARV synbiotic supplementation in HIV-infected individuals may improve GI tract immunity and thereby mitigate inflammatory sequelae, ultimately improving prognosis.

Authors

Nichole R. Klatt, Lauren A. Canary, Xiaoyong Sun, Carol L. Vinton, Nicholas T. Funderburg, David R. Morcock, Mariam Quiñones, Clayton B. Deming, Molly Perkins, Daria J. Hazuda, Michael D. Miller, Michael M. Lederman, Julie A. Segre, Jeffrey D. Lifson, Elias K. Haddad, Jacob D. Estes, Jason M. Brenchley

×

Platelet ITAM signaling is critical for vascular integrity in inflammation
Yacine Boulaftali, … , Mark L. Kahn, Wolfgang Bergmeier
Yacine Boulaftali, … , Mark L. Kahn, Wolfgang Bergmeier
Published January 25, 2013
Citation Information: J Clin Invest. 2013;123(2):908-916. https://doi.org/10.1172/JCI65154.
View: Text | PDF

Platelet ITAM signaling is critical for vascular integrity in inflammation

  • Text
  • PDF
Abstract

Platelets play a critical role in maintaining vascular integrity during inflammation, but little is known about the underlying molecular mechanisms. Here we report that platelet immunoreceptor tyrosine activation motif (ITAM) signaling, but not GPCR signaling, is critical for the prevention of inflammation-induced hemorrhage. To generate mice with partial or complete defects in these signaling pathways, we developed a protocol for adoptive transfer of genetically and/or chemically inhibited platelets into thrombocytopenic (TP) mice. Unexpectedly, platelets with impaired GPCR signaling, a crucial component of platelet plug formation and hemostasis, were indistinguishable from WT platelets in their ability to prevent hemorrhage at sites of inflammation. In contrast, inhibition of GPVI or genetic deletion of Clec2, the only ITAM receptors expressed on mouse platelets, significantly reduced the ability of platelets to prevent inflammation-induced hemorrhage. Moreover, transfusion of platelets without ITAM receptor function or platelets lacking the adapter protein SLP-76 into TP mice had no significant effect on vascular integrity during inflammation. These results indicate that the control of vascular integrity is a major function of immune-type receptors in platelets, highlighting a potential clinical complication of novel antithrombotic agents directed toward the ITAM signaling pathway.

Authors

Yacine Boulaftali, Paul R. Hess, Todd M. Getz, Agnieszka Cholka, Moritz Stolla, Nigel Mackman, A. Phillip Owens III, Jerry Ware, Mark L. Kahn, Wolfgang Bergmeier

×

Coal tar induces AHR-dependent skin barrier repair in atopic dermatitis
Ellen H. van den Bogaard, … , Patrick L.J.M. Zeeuwen, Joost Schalkwijk
Ellen H. van den Bogaard, … , Patrick L.J.M. Zeeuwen, Joost Schalkwijk
Published January 25, 2013
Citation Information: J Clin Invest. 2013;123(2):917-927. https://doi.org/10.1172/JCI65642.
View: Text | PDF

Coal tar induces AHR-dependent skin barrier repair in atopic dermatitis

  • Text
  • PDF
Abstract

Topical application of coal tar is one of the oldest therapies for atopic dermatitis (AD), a T helper 2 (Th2) lymphocyte–mediated skin disease associated with loss-of-function mutations in the skin barrier gene, filaggrin (FLG). Despite its longstanding clinical use and efficacy, the molecular mechanism of coal tar therapy is unknown. Using organotypic skin models with primary keratinocytes from AD patients and controls, we found that coal tar activated the aryl hydrocarbon receptor (AHR), resulting in induction of epidermal differentiation. AHR knockdown by siRNA completely abrogated this effect. Coal tar restored filaggrin expression in FLG-haploinsufficient keratinocytes to wild-type levels, and counteracted Th2 cytokine–mediated downregulation of skin barrier proteins. In AD patients, coal tar completely restored expression of major skin barrier proteins, including filaggrin. Using organotypic skin models stimulated with Th2 cytokines IL-4 and IL-13, we found coal tar to diminish spongiosis, apoptosis, and CCL26 expression, all AD hallmarks. Coal tar interfered with Th2 cytokine signaling via dephosphorylation of STAT6, most likely due to AHR-regulated activation of the NRF2 antioxidative stress pathway. The therapeutic effect of AHR activation herein described opens a new avenue to reconsider AHR as a pharmacological target and could lead to the development of mechanism-based drugs for AD.

Authors

Ellen H. van den Bogaard, Judith G.M. Bergboer, Mieke Vonk-Bergers, Ivonne M.J.J. van Vlijmen-Willems, Stanleyson V. Hato, Pieter G.M. van der Valk, Jens Michael Schröder, Irma Joosten, Patrick L.J.M. Zeeuwen, Joost Schalkwijk

×

iRHOM2 is a critical pathogenic mediator of inflammatory arthritis
Priya Darshinee A. Issuree, … , Jane E. Salmon, Carl P. Blobel
Priya Darshinee A. Issuree, … , Jane E. Salmon, Carl P. Blobel
Published January 25, 2013
Citation Information: J Clin Invest. 2013;123(2):928-932. https://doi.org/10.1172/JCI66168.
View: Text | PDF Brief Report

iRHOM2 is a critical pathogenic mediator of inflammatory arthritis

  • Text
  • PDF
Abstract

iRHOM2, encoded by the gene Rhbdf2, regulates the maturation of the TNF-α convertase (TACE), which controls shedding of TNF-α and its biological activity in vivo. TACE is a potential target to treat TNF-α–dependent diseases, such as rheumatoid arthritis, but there are concerns about potential side effects, because TACE also protects the skin and intestinal barrier by activating EGFR signaling. Here we report that inactivation of Rhbdf2 allows tissue-specific regulation of TACE by selectively preventing its maturation in immune cells, without affecting its homeostatic functions in other tissues. The related iRHOM1, which is widely expressed, except in hematopoietic cells, supported TACE maturation and shedding of the EGFR ligand TGF-α in Rhbdf2-deficient cells. Remarkably, mice lacking Rhbdf2 were protected from K/BxN inflammatory arthritis to the same extent as mice lacking TACE in myeloid cells or Tnfa-deficient mice. In probing the underlying mechanism, we found that two main drivers of K/BxN arthritis, complement C5a and immune complexes, stimulated iRHOM2/TACE-dependent shedding of TNF-α in mouse and human cells. These data demonstrate that iRHOM2 and myeloid-expressed TACE play a critical role in inflammatory arthritis and indicate that iRHOM2 is a potential therapeutic target for selective inactivation of TACE in myeloid cells.

Authors

Priya Darshinee A. Issuree, Thorsten Maretzky, David R. McIlwain, Sébastien Monette, Xiaoping Qing, Philipp A. Lang, Steven L. Swendeman, Kyung-Hyun Park-Min, Nikolaus Binder, George D. Kalliolias, Anna Yarilina, Keisuke Horiuchi, Lionel B. Ivashkiv, Tak W. Mak, Jane E. Salmon, Carl P. Blobel

×
Corrigenda
The deubiquitinase USP44 is a tumor suppressor that protects against chromosome missegregation
Andrew J. Holland, Don W. Cleveland
Andrew J. Holland, Don W. Cleveland
Published February 1, 2013
Citation Information: J Clin Invest. 2013;123(2):933-933. https://doi.org/10.1172/JCI68319.
View: Text | PDF | Amended Article

The deubiquitinase USP44 is a tumor suppressor that protects against chromosome missegregation

  • Text
  • PDF
Abstract

Authors

Andrew J. Holland, Don W. Cleveland

×

CBX7 is a tumor suppressor in mice and humans
Floriana Forzati, … , Monica Fedele, Alfredo Fusco
Floriana Forzati, … , Monica Fedele, Alfredo Fusco
Published February 1, 2013
Citation Information: J Clin Invest. 2013;123(2):934-934. https://doi.org/10.1172/JCI68754.
View: Text | PDF | Amended Article

CBX7 is a tumor suppressor in mice and humans

  • Text
  • PDF
Abstract

Authors

Floriana Forzati, Antonella Federico, Pierlorenzo Pallante, Adele Abbate, Francesco Esposito, Umberto Malapelle, Romina Sepe, Giuseppe Palma, Giancarlo Troncone, Marzia Scarfò, Claudio Arra, Monica Fedele, Alfredo Fusco

×
Advertisement

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts