Go to JCI Insight
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
  • Clinical Research and Public Health
  • Current issue
  • Past issues
  • By specialty
    • COVID-19
    • Cardiology
    • Gastroenterology
    • Immunology
    • Metabolism
    • Nephrology
    • Neuroscience
    • Oncology
    • Pulmonology
    • Vascular biology
    • All ...
  • Videos
    • Conversations with Giants in Medicine
    • Video Abstracts
  • Reviews
    • View all reviews ...
    • Complement Biology and Therapeutics (May 2025)
    • Evolving insights into MASLD and MASH pathogenesis and treatment (Apr 2025)
    • Microbiome in Health and Disease (Feb 2025)
    • Substance Use Disorders (Oct 2024)
    • Clonal Hematopoiesis (Oct 2024)
    • Sex Differences in Medicine (Sep 2024)
    • Vascular Malformations (Apr 2024)
    • View all review series ...
  • Viewpoint
  • Collections
    • In-Press Preview
    • Clinical Research and Public Health
    • Research Letters
    • Letters to the Editor
    • Editorials
    • Commentaries
    • Editor's notes
    • Reviews
    • Viewpoints
    • 100th anniversary
    • Top read articles

  • Current issue
  • Past issues
  • Specialties
  • Reviews
  • Review series
  • Conversations with Giants in Medicine
  • Video Abstracts
  • In-Press Preview
  • Clinical Research and Public Health
  • Research Letters
  • Letters to the Editor
  • Editorials
  • Commentaries
  • Editor's notes
  • Reviews
  • Viewpoints
  • 100th anniversary
  • Top read articles
  • About
  • Editors
  • Consulting Editors
  • For authors
  • Publication ethics
  • Publication alerts by email
  • Advertising
  • Job board
  • Contact
Multiple functions of a glioblastoma fusion oncogene
Ivan Babic, Paul S. Mischel
Ivan Babic, Paul S. Mischel
Published January 9, 2013
Citation Information: J Clin Invest. 2013;123(2):548-551. https://doi.org/10.1172/JCI67658.
View: Text | PDF
Commentary

Multiple functions of a glioblastoma fusion oncogene

  • Text
  • PDF
Abstract

RNA sequencing facilitates the discovery of novel gene fusions in cancer. In this issue of the JCI, Parker et al. identify an FGFR3-TACC3 fusion oncogene in glioblastoma and demonstrate a novel mechanism of pathogenicity. A miR-99a binding site within the 3′–untranslated region (3′-UTR) of FGFR3 is lost, releasing FGFR3 signaling from miR-99a–dependent inhibition and greatly enhancing tumor progression relative to WT FGFR3. These results provide compelling insight into the pathogenicity of a novel fusion oncogene and suggest new therapeutic approaches for a subset of glioblastomas.

Authors

Ivan Babic, Paul S. Mischel

×

Figure 1

A tandem duplication event results in the formation of an FGFR3-TACC3 fusion product.

Options: View larger image (or click on image) Download as PowerPoint
A tandem duplication event results in the formation of an FGFR3-TACC3 fu...
Here, Parker et al. demonstrate that the fusion transcript lacks a miR-99a binding site, resulting in increased expression (12). In addition, FGFR3-TACC3 fusion activates ERK and STAT3 signaling and enhances tumor progression. Previous work also demonstrated that localization of this fusion protein to the mitotic spindles promotes aneuploidy (13).

Copyright © 2025 American Society for Clinical Investigation
ISSN: 0021-9738 (print), 1558-8238 (online)

Sign up for email alerts